Limits...
Increased incidence of myelodysplastic syndrome and acute myeloid leukemia following breast cancer treatment with radiation alone or combined with chemotherapy: a registry cohort analysis 1990-2005.

Kaplan HG, Malmgren JA, Atwood MK - BMC Cancer (2011)

Bottom Line: Rates observed at our community based cancer care institution were compared to SEER incidence data for rate ratio (RR) calculations. 17 cases of MDS/AML (10 MDS/7 AML) occurred during the follow up period, crude rate .29% (95% CI = .17, .47), SEER comparison RR = 3.94 (95% CI = 2.34, 6.15).The RR of MDS in patients age < 65 comparing our cohort incidence to SEER incidence data was 10.88 (95% CI = 3.84, 24.03) and the RR of AML in patients age < 65 was 5.32 (95% CI = 1.31, 14.04).Although a small number of patients are affected, leukemia risk associated with treatment and younger age is significant.

View Article: PubMed Central - HTML - PubMed

Affiliation: Swedish Cancer Institute at Swedish Medical Center, Seattle, WA, USA. kaplan.hank@swedish.org

ABSTRACT

Background: Our objective was to measure myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML) risk associated with radiation and/or chemotherapy breast cancer (BC) treatment.

Methods: Our study cohort was composed of BC patients diagnosed from 1990 to 2005 and followed up for blood disorders, mean length of follow up = 7.17 years, range 2-18 years. 5790 TNM stage 0-III patients treated with surgery alone, radiation and/or chemotherapy were included. Patients without surgery (n = 111), with stem cell transplantation (n = 98), unknown or non-standard chemotherapy regimens (n = 94), lost to follow up (n = 66) or 'cancer status unknown' (n = 67) were excluded. Rates observed at our community based cancer care institution were compared to SEER incidence data for rate ratio (RR) calculations.

Results: 17 cases of MDS/AML (10 MDS/7 AML) occurred during the follow up period, crude rate .29% (95% CI = .17, .47), SEER comparison RR = 3.94 (95% CI = 2.34, 6.15). The RR of MDS in patients age < 65 comparing our cohort incidence to SEER incidence data was 10.88 (95% CI = 3.84, 24.03) and the RR of AML in patients age < 65 was 5.32 (95% CI = 1.31, 14.04). No significant increased risk of MDS or AML was observed in women ≥ 65 or the surgery/chemotherapy-only group. A RR of 3.32 (95% CI = 1.42, 6.45) was observed in the surgery/radiation-only group and a RR of 6.32 (95% CI = 3.03, 11.45) in the surgery/radiation/chemotherapy group. 3 out of 10 MDS cases died of disease at an average 3.8 months post diagnosis and five of seven AML cases died at an average 9 months post diagnosis.

Conclusions: An elevated rate of MDS and AML was observed among breast cancer patients < 65, those treated with radiation and those treated with radiation and chemotherapy compared to available population incidence data. Although a small number of patients are affected, leukemia risk associated with treatment and younger age is significant.

Show MeSH

Related in: MedlinePlus

Time in years from categorical breast cancer treatment to diagnosis of myelodysplastic syndrome or acute myelogenous leukemia (n = 17).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3141775&req=5

Figure 3: Time in years from categorical breast cancer treatment to diagnosis of myelodysplastic syndrome or acute myelogenous leukemia (n = 17).

Mentions: Comparing the rate of MDS/AML in our cohort by treatment category to the SEER 9 S-PS region MDS/AML incidence rates, the rate ratio among patients treated with surgery/radiation (n = 7) was 3.32 (95% CI = 1.42, 6.45) and surgery/radiation/chemotherapy (n = 9) was 6.32 (95% CI = 3.03, 11.45). No cases of MDS/AML were observed in the surgery only group and one case occurred in the surgery/chemotherapy group (RR = 1.88, 95% CI = .11, 8.30) (table 6). MDS/AML incidence distribution was not significantly different by age but treatment received was significantly different by age with younger patients receiving more chemotherapy. In a Cox regression model measuring time to leukemia diagnosis in months and correcting for age, initial treatment was not significant in the model (n = 5,790), (-2 log likelihood = 270.52, chi square = 3.65, 2 degrees of freedom, p = .456). Due to zero cases of MDS/AML in the surgery only group when the groups including treatment for recurrence were used, a second model could not be run. In survival analysis the four treatment groups did not differ significantly from time of initial breast cancer diagnosis to time of MDS/AML diagnosis (log rank test = 4.327, p = .226) with the majority of the surgery/radiation/chemotherapy group MDS/AML incidence occurring within 5 years of treatment (n = 7) (Figure 3). There was no significant difference in leukemia incidence by GCSF treatment with 972/2081 chemotherapy patients treated with GCSF, Pearson chi square = .877, p = .349.


Increased incidence of myelodysplastic syndrome and acute myeloid leukemia following breast cancer treatment with radiation alone or combined with chemotherapy: a registry cohort analysis 1990-2005.

Kaplan HG, Malmgren JA, Atwood MK - BMC Cancer (2011)

Time in years from categorical breast cancer treatment to diagnosis of myelodysplastic syndrome or acute myelogenous leukemia (n = 17).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3141775&req=5

Figure 3: Time in years from categorical breast cancer treatment to diagnosis of myelodysplastic syndrome or acute myelogenous leukemia (n = 17).
Mentions: Comparing the rate of MDS/AML in our cohort by treatment category to the SEER 9 S-PS region MDS/AML incidence rates, the rate ratio among patients treated with surgery/radiation (n = 7) was 3.32 (95% CI = 1.42, 6.45) and surgery/radiation/chemotherapy (n = 9) was 6.32 (95% CI = 3.03, 11.45). No cases of MDS/AML were observed in the surgery only group and one case occurred in the surgery/chemotherapy group (RR = 1.88, 95% CI = .11, 8.30) (table 6). MDS/AML incidence distribution was not significantly different by age but treatment received was significantly different by age with younger patients receiving more chemotherapy. In a Cox regression model measuring time to leukemia diagnosis in months and correcting for age, initial treatment was not significant in the model (n = 5,790), (-2 log likelihood = 270.52, chi square = 3.65, 2 degrees of freedom, p = .456). Due to zero cases of MDS/AML in the surgery only group when the groups including treatment for recurrence were used, a second model could not be run. In survival analysis the four treatment groups did not differ significantly from time of initial breast cancer diagnosis to time of MDS/AML diagnosis (log rank test = 4.327, p = .226) with the majority of the surgery/radiation/chemotherapy group MDS/AML incidence occurring within 5 years of treatment (n = 7) (Figure 3). There was no significant difference in leukemia incidence by GCSF treatment with 972/2081 chemotherapy patients treated with GCSF, Pearson chi square = .877, p = .349.

Bottom Line: Rates observed at our community based cancer care institution were compared to SEER incidence data for rate ratio (RR) calculations. 17 cases of MDS/AML (10 MDS/7 AML) occurred during the follow up period, crude rate .29% (95% CI = .17, .47), SEER comparison RR = 3.94 (95% CI = 2.34, 6.15).The RR of MDS in patients age < 65 comparing our cohort incidence to SEER incidence data was 10.88 (95% CI = 3.84, 24.03) and the RR of AML in patients age < 65 was 5.32 (95% CI = 1.31, 14.04).Although a small number of patients are affected, leukemia risk associated with treatment and younger age is significant.

View Article: PubMed Central - HTML - PubMed

Affiliation: Swedish Cancer Institute at Swedish Medical Center, Seattle, WA, USA. kaplan.hank@swedish.org

ABSTRACT

Background: Our objective was to measure myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML) risk associated with radiation and/or chemotherapy breast cancer (BC) treatment.

Methods: Our study cohort was composed of BC patients diagnosed from 1990 to 2005 and followed up for blood disorders, mean length of follow up = 7.17 years, range 2-18 years. 5790 TNM stage 0-III patients treated with surgery alone, radiation and/or chemotherapy were included. Patients without surgery (n = 111), with stem cell transplantation (n = 98), unknown or non-standard chemotherapy regimens (n = 94), lost to follow up (n = 66) or 'cancer status unknown' (n = 67) were excluded. Rates observed at our community based cancer care institution were compared to SEER incidence data for rate ratio (RR) calculations.

Results: 17 cases of MDS/AML (10 MDS/7 AML) occurred during the follow up period, crude rate .29% (95% CI = .17, .47), SEER comparison RR = 3.94 (95% CI = 2.34, 6.15). The RR of MDS in patients age < 65 comparing our cohort incidence to SEER incidence data was 10.88 (95% CI = 3.84, 24.03) and the RR of AML in patients age < 65 was 5.32 (95% CI = 1.31, 14.04). No significant increased risk of MDS or AML was observed in women ≥ 65 or the surgery/chemotherapy-only group. A RR of 3.32 (95% CI = 1.42, 6.45) was observed in the surgery/radiation-only group and a RR of 6.32 (95% CI = 3.03, 11.45) in the surgery/radiation/chemotherapy group. 3 out of 10 MDS cases died of disease at an average 3.8 months post diagnosis and five of seven AML cases died at an average 9 months post diagnosis.

Conclusions: An elevated rate of MDS and AML was observed among breast cancer patients < 65, those treated with radiation and those treated with radiation and chemotherapy compared to available population incidence data. Although a small number of patients are affected, leukemia risk associated with treatment and younger age is significant.

Show MeSH
Related in: MedlinePlus