Limits...
Renal function at the time of a myocardial infarction maintains prognostic value for more than 10 years.

Kümler T, Gislason GH, Kober L, Gustafsson F, Schou M, Torp-Pedersen C - BMC Cardiovasc Disord (2011)

Bottom Line: Landmark analysis showed that eGFR at the time of screening continued to show prognostic effect until 16 years of follow-up.By multivariable Cox regression analysis, the prognostic effect of eGFR persisted for 12 years and of se-creatinine for 10 years.When comparing the lowest group of eGFR with the group with normal eGFR, prognostic significance was present in the entire period of follow-up with a hazard ratio between 1,97 (CI 1,65-2,35) and 1,35 (CI 0,99-1,84) in the 2-year periods.

View Article: PubMed Central - HTML - PubMed

Affiliation: Dept. of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark. tkumler@dadlnet.dk

ABSTRACT

Background: Renal function is an important predictor of mortality in patients with myocardial infarction (MI), but changes in the impact over time have not been well described.We examined the importance of renal function by estimated GFR (eGFR) and se-creatinine as an independent long-term prognostic factor.

Methods: Prospective follow-up of 6653 consecutive MI patients screened for entry in the Trandolapril Cardiac Evaluation (TRACE) study. The patients were analysed by Kaplan-Meier survival analysis, landmark analysis and Cox proportional hazard models. Outcome measure was all-cause mortality.

Results: An eGFR below 60 ml per minute per 1.73 m2, consistent with chronic renal disease, was present in 42% of the patients. We divided the patients into 4 groups according to eGFR. Overall, Cox proportional-hazards models showed that eGFR was a significant prognostic factor in the two groups with the lowest eGFR, hazard ratio 1,72 (confidence interval (CI) 1,56-1,91) in the group with the lowest eGFR. Using the eGFR group with normal renal function as reference, we observed an incremental rise in hazard ratio. We divided the follow-up period in 2-year intervals. Landmark analysis showed that eGFR at the time of screening continued to show prognostic effect until 16 years of follow-up. By multivariable Cox regression analysis, the prognostic effect of eGFR persisted for 12 years and of se-creatinine for 10 years. When comparing the lowest group of eGFR with the group with normal eGFR, prognostic significance was present in the entire period of follow-up with a hazard ratio between 1,97 (CI 1,65-2,35) and 1,35 (CI 0,99-1,84) in the 2-year periods.

Conclusions: One estimate of renal function is a strong and independent long-term prognostic factor for 10-12 years following a MI.

Show MeSH

Related in: MedlinePlus

Unadjusted all-cause mortality stratified by eGFR group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3141759&req=5

Figure 1: Unadjusted all-cause mortality stratified by eGFR group.

Mentions: Renal function was inversely related to all-cause mortality (figure 1, unadjusted analysis). The mortality was 43,0% (eGFR group 1), 56,9% (eGFR group 2), 71,9% (eGFR group 3), 89,7% (eGFR group 4) at 10 years of follow-up and 57,7% (eGFR group 1), 71,3% (eGFR group 2), 83,6% (eGFR group 3), 95,4% (eGFR group 4) at 15 years of follow-up (p < 0.0001 for difference between the 4 eGFR groups). To clarify the importance of renal function as prognostic factor we performed a Landmark analysis illustrating survival stratified by eGFR group and adjusted for age and sex in 2 year intervals after the infarction (figure 2). Estimation of renal function has prognostic significance for up to 16 years following MI, even without adjustment for changing values of se-creatinine. Landmark analyses of 2-year periods shows that the statistic significance disappears after 12 years of follow-up, but hazard ratio is almost the same in the following years, so the lack of significance in this period is probably a result of lack of power. The hazard ratio is close to 1.00 only after 16 years of follow-up.


Renal function at the time of a myocardial infarction maintains prognostic value for more than 10 years.

Kümler T, Gislason GH, Kober L, Gustafsson F, Schou M, Torp-Pedersen C - BMC Cardiovasc Disord (2011)

Unadjusted all-cause mortality stratified by eGFR group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3141759&req=5

Figure 1: Unadjusted all-cause mortality stratified by eGFR group.
Mentions: Renal function was inversely related to all-cause mortality (figure 1, unadjusted analysis). The mortality was 43,0% (eGFR group 1), 56,9% (eGFR group 2), 71,9% (eGFR group 3), 89,7% (eGFR group 4) at 10 years of follow-up and 57,7% (eGFR group 1), 71,3% (eGFR group 2), 83,6% (eGFR group 3), 95,4% (eGFR group 4) at 15 years of follow-up (p < 0.0001 for difference between the 4 eGFR groups). To clarify the importance of renal function as prognostic factor we performed a Landmark analysis illustrating survival stratified by eGFR group and adjusted for age and sex in 2 year intervals after the infarction (figure 2). Estimation of renal function has prognostic significance for up to 16 years following MI, even without adjustment for changing values of se-creatinine. Landmark analyses of 2-year periods shows that the statistic significance disappears after 12 years of follow-up, but hazard ratio is almost the same in the following years, so the lack of significance in this period is probably a result of lack of power. The hazard ratio is close to 1.00 only after 16 years of follow-up.

Bottom Line: Landmark analysis showed that eGFR at the time of screening continued to show prognostic effect until 16 years of follow-up.By multivariable Cox regression analysis, the prognostic effect of eGFR persisted for 12 years and of se-creatinine for 10 years.When comparing the lowest group of eGFR with the group with normal eGFR, prognostic significance was present in the entire period of follow-up with a hazard ratio between 1,97 (CI 1,65-2,35) and 1,35 (CI 0,99-1,84) in the 2-year periods.

View Article: PubMed Central - HTML - PubMed

Affiliation: Dept. of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark. tkumler@dadlnet.dk

ABSTRACT

Background: Renal function is an important predictor of mortality in patients with myocardial infarction (MI), but changes in the impact over time have not been well described.We examined the importance of renal function by estimated GFR (eGFR) and se-creatinine as an independent long-term prognostic factor.

Methods: Prospective follow-up of 6653 consecutive MI patients screened for entry in the Trandolapril Cardiac Evaluation (TRACE) study. The patients were analysed by Kaplan-Meier survival analysis, landmark analysis and Cox proportional hazard models. Outcome measure was all-cause mortality.

Results: An eGFR below 60 ml per minute per 1.73 m2, consistent with chronic renal disease, was present in 42% of the patients. We divided the patients into 4 groups according to eGFR. Overall, Cox proportional-hazards models showed that eGFR was a significant prognostic factor in the two groups with the lowest eGFR, hazard ratio 1,72 (confidence interval (CI) 1,56-1,91) in the group with the lowest eGFR. Using the eGFR group with normal renal function as reference, we observed an incremental rise in hazard ratio. We divided the follow-up period in 2-year intervals. Landmark analysis showed that eGFR at the time of screening continued to show prognostic effect until 16 years of follow-up. By multivariable Cox regression analysis, the prognostic effect of eGFR persisted for 12 years and of se-creatinine for 10 years. When comparing the lowest group of eGFR with the group with normal eGFR, prognostic significance was present in the entire period of follow-up with a hazard ratio between 1,97 (CI 1,65-2,35) and 1,35 (CI 0,99-1,84) in the 2-year periods.

Conclusions: One estimate of renal function is a strong and independent long-term prognostic factor for 10-12 years following a MI.

Show MeSH
Related in: MedlinePlus