Limits...
Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize.

Casati P, Campi M, Morrow DJ, Fernandes JF, Walbot V - BMC Genomics (2011)

Bottom Line: There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs.A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion.Immature maize ears are highly responsive to canopy leaf exposure to UV-B.

View Article: PubMed Central - HTML - PubMed

Affiliation: Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.

ABSTRACT

Background: Under normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.

Results: Using transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.

Conclusions: There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.

Show MeSH

Related in: MedlinePlus

Transcriptome changes in irradiated and shielded leaves from plants with different canopy leaf exposure. Up-regulated genes are red, down-regulated genes are green. (a) Intersection of genes differentially expressed in irradiated leaves. (b and c) Intersection of genes differentially expressed in shielded leaves. Each sample was compared to plants under control conditions with no UV-B (NI).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3141669&req=5

Figure 3: Transcriptome changes in irradiated and shielded leaves from plants with different canopy leaf exposure. Up-regulated genes are red, down-regulated genes are green. (a) Intersection of genes differentially expressed in irradiated leaves. (b and c) Intersection of genes differentially expressed in shielded leaves. Each sample was compared to plants under control conditions with no UV-B (NI).

Mentions: The datasets for 4 h WPI and CLI were evaluated for common responses (Figure 3a; Tables S2 and S3 in Additional file 2). It is striking that more transcriptome changes are found in CLI than in WPI leaves: 483 transcript alterations with one leaf irradiated and 700 for two leaves. A subset of these may be responses to minor damage from threading leaves through the PE plastic ~24 h before treatments. Of the 416 transcripts differentially expressed more than 2-fold in WPI leaves compared to non-irradiated plants, only 162 (82 up and 80 down) are unique to this treatment (Table S2 in Additional file 2). Regulation of these 162 transcripts requires either that the entire plant receives the stimulus or that organs in addition to top irradiated leaves must sense UV-B directly. After assignment of GO terms (Additional file 1), up-regulated transcripts include transporters, kinases that participate in signaling, proteinases, and TFs. Exemplar down-regulated genes include those encoding heat shock proteins (HSPs), protein kinases, and other transporters.


Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize.

Casati P, Campi M, Morrow DJ, Fernandes JF, Walbot V - BMC Genomics (2011)

Transcriptome changes in irradiated and shielded leaves from plants with different canopy leaf exposure. Up-regulated genes are red, down-regulated genes are green. (a) Intersection of genes differentially expressed in irradiated leaves. (b and c) Intersection of genes differentially expressed in shielded leaves. Each sample was compared to plants under control conditions with no UV-B (NI).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3141669&req=5

Figure 3: Transcriptome changes in irradiated and shielded leaves from plants with different canopy leaf exposure. Up-regulated genes are red, down-regulated genes are green. (a) Intersection of genes differentially expressed in irradiated leaves. (b and c) Intersection of genes differentially expressed in shielded leaves. Each sample was compared to plants under control conditions with no UV-B (NI).
Mentions: The datasets for 4 h WPI and CLI were evaluated for common responses (Figure 3a; Tables S2 and S3 in Additional file 2). It is striking that more transcriptome changes are found in CLI than in WPI leaves: 483 transcript alterations with one leaf irradiated and 700 for two leaves. A subset of these may be responses to minor damage from threading leaves through the PE plastic ~24 h before treatments. Of the 416 transcripts differentially expressed more than 2-fold in WPI leaves compared to non-irradiated plants, only 162 (82 up and 80 down) are unique to this treatment (Table S2 in Additional file 2). Regulation of these 162 transcripts requires either that the entire plant receives the stimulus or that organs in addition to top irradiated leaves must sense UV-B directly. After assignment of GO terms (Additional file 1), up-regulated transcripts include transporters, kinases that participate in signaling, proteinases, and TFs. Exemplar down-regulated genes include those encoding heat shock proteins (HSPs), protein kinases, and other transporters.

Bottom Line: There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs.A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion.Immature maize ears are highly responsive to canopy leaf exposure to UV-B.

View Article: PubMed Central - HTML - PubMed

Affiliation: Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.

ABSTRACT

Background: Under normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.

Results: Using transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.

Conclusions: There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.

Show MeSH
Related in: MedlinePlus