Limits...
A functional genomic screen combined with time-lapse microscopy uncovers a novel set of genes involved in dorsal closure of Drosophila embryos.

Jankovics F, Henn L, Bujna Á, Vilmos P, Kiss N, Erdélyi M - PLoS ONE (2011)

Bottom Line: Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program.We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells.Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.

View Article: PubMed Central - PubMed

Affiliation: Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary. jankovic@brc.hu

ABSTRACT
Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.

Show MeSH

Related in: MedlinePlus

Abnormal dorsal closure dynamics generated by RNAi.RNAi phenotypes of genes in the phenotypic category II. Frames from movie sequences show abnormal dorsal closure dynamics of dsRNA-injected embryos expressing the ZCL0423 protein trap fusion protein. Arrows indicate misaligned sites. All embryos are shown in dorsal view with anterior to the left. Scale bar represents 50 µm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3140500&req=5

pone-0022229-g003: Abnormal dorsal closure dynamics generated by RNAi.RNAi phenotypes of genes in the phenotypic category II. Frames from movie sequences show abnormal dorsal closure dynamics of dsRNA-injected embryos expressing the ZCL0423 protein trap fusion protein. Arrows indicate misaligned sites. All embryos are shown in dorsal view with anterior to the left. Scale bar represents 50 µm.

Mentions: Since phenotyping of the silenced embryos was performed in living embryos, we were able to identify not only genes essential for closure but also genes affecting the dynamics of closure (Group II). Accordingly, in the second phenotypic group closure took place, but with abnormal dynamics. Krüppel (Kr), patched (ptc), ADP ribosylation factor 51F (Arf51F) and pbl genes belong to this phenotypic category. Since silencing does not result in a dorsal hole in the larval cuticle, these genes have not previously been implicated in dorsal closure (Figure 3, Movie S3). However, application of our in vivo screening approach revealed the requirement of these novel genes in dorsal closure.


A functional genomic screen combined with time-lapse microscopy uncovers a novel set of genes involved in dorsal closure of Drosophila embryos.

Jankovics F, Henn L, Bujna Á, Vilmos P, Kiss N, Erdélyi M - PLoS ONE (2011)

Abnormal dorsal closure dynamics generated by RNAi.RNAi phenotypes of genes in the phenotypic category II. Frames from movie sequences show abnormal dorsal closure dynamics of dsRNA-injected embryos expressing the ZCL0423 protein trap fusion protein. Arrows indicate misaligned sites. All embryos are shown in dorsal view with anterior to the left. Scale bar represents 50 µm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3140500&req=5

pone-0022229-g003: Abnormal dorsal closure dynamics generated by RNAi.RNAi phenotypes of genes in the phenotypic category II. Frames from movie sequences show abnormal dorsal closure dynamics of dsRNA-injected embryos expressing the ZCL0423 protein trap fusion protein. Arrows indicate misaligned sites. All embryos are shown in dorsal view with anterior to the left. Scale bar represents 50 µm.
Mentions: Since phenotyping of the silenced embryos was performed in living embryos, we were able to identify not only genes essential for closure but also genes affecting the dynamics of closure (Group II). Accordingly, in the second phenotypic group closure took place, but with abnormal dynamics. Krüppel (Kr), patched (ptc), ADP ribosylation factor 51F (Arf51F) and pbl genes belong to this phenotypic category. Since silencing does not result in a dorsal hole in the larval cuticle, these genes have not previously been implicated in dorsal closure (Figure 3, Movie S3). However, application of our in vivo screening approach revealed the requirement of these novel genes in dorsal closure.

Bottom Line: Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program.We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells.Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.

View Article: PubMed Central - PubMed

Affiliation: Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary. jankovic@brc.hu

ABSTRACT
Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.

Show MeSH
Related in: MedlinePlus