Limits...
Perfluorocarbon particle size influences magnetic resonance signal and immunological properties of dendritic cells.

Waiczies H, Lepore S, Janitzek N, Hagen U, Seifert F, Ittermann B, Purfürst B, Pezzutto A, Paul F, Niendorf T, Waiczies S - PLoS ONE (2011)

Bottom Line: Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm).When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells.Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells.

View Article: PubMed Central - PubMed

Affiliation: Max Delbrück Center for Molecular Medicine and Charité Medical Faculty, Berlin, Germany.

ABSTRACT
The development of cellular tracking by fluorine ((19)F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton ((1)H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by (19)F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the (19)F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models.

Show MeSH

Related in: MedlinePlus

Larger perfluorocarbon particles hinder DC phagocytic activity but promote T cell response.(A) DC were incubated with/without 19F particles (560 nm) and ovalbumin (OVA) peptide and then co-incubated with naïve CD8+ T cells (CD8+CD44-CD62L+). Shown is the proliferation of CD8+ T cells measured in cpm (counts per minute) using a standard 3H-thymidine incorporation assay. This experiment is representative of 3 independent experiments. (B) DC were incubated with 19F particles (560 nm) over a period of time and their phagocytic capacity measured using a FITC-dextran incorporation assay. The fluorescence intensity of FITC-dextran in CD11c+ DC was measured by FACS analysis. This experiment is representative of 4 independent experiments. (C) DC were incubated with 19F particles (560 nm) and full-length endotoxin-free ovalbumin. Thereafter DC were co-incubated with B3Z T cells. Shown is an X-Gal staining of activated, β-galactosidase expressing (blue) B3Z T cells. This experiment is representative of 2 independent experiments. (D) DC were treated with 19F particles and full-length ovalbumin, thereafter co-incubated with B3Z T cells as in C. To quantify T cell activation, the amount of soluble IL-2 in the cell culture supernatants was measured by ELISA. This experiment is representative of 3 independent experiments.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3139612&req=5

pone-0021981-g004: Larger perfluorocarbon particles hinder DC phagocytic activity but promote T cell response.(A) DC were incubated with/without 19F particles (560 nm) and ovalbumin (OVA) peptide and then co-incubated with naïve CD8+ T cells (CD8+CD44-CD62L+). Shown is the proliferation of CD8+ T cells measured in cpm (counts per minute) using a standard 3H-thymidine incorporation assay. This experiment is representative of 3 independent experiments. (B) DC were incubated with 19F particles (560 nm) over a period of time and their phagocytic capacity measured using a FITC-dextran incorporation assay. The fluorescence intensity of FITC-dextran in CD11c+ DC was measured by FACS analysis. This experiment is representative of 4 independent experiments. (C) DC were incubated with 19F particles (560 nm) and full-length endotoxin-free ovalbumin. Thereafter DC were co-incubated with B3Z T cells. Shown is an X-Gal staining of activated, β-galactosidase expressing (blue) B3Z T cells. This experiment is representative of 2 independent experiments. (D) DC were treated with 19F particles and full-length ovalbumin, thereafter co-incubated with B3Z T cells as in C. To quantify T cell activation, the amount of soluble IL-2 in the cell culture supernatants was measured by ELISA. This experiment is representative of 3 independent experiments.

Mentions: CD86 (B7.2) provides the dominant costimulatory signal during early T cell activation [14]. Indeed an increased expression of CD86 on DC following treatment with the 560 nm PFCE particles was accompanied by an increase in priming of antigen-specific T cells by these DC (Fig. 4A). Naïve CD8+ T cells from C57BL/6-Tg(OT-I)-RAG1tm1Mom mice primed with DC loaded for 2 h with OVA peptide, 18 h following 19F labeling (CD86hi), proliferated significantly better than CD8+ T cells primed with unlabeled DC (p<0.05) or with DC that had been loaded with OVA peptide 2 h prior to 19F labeling (p<0.001) (Fig. 4A).


Perfluorocarbon particle size influences magnetic resonance signal and immunological properties of dendritic cells.

Waiczies H, Lepore S, Janitzek N, Hagen U, Seifert F, Ittermann B, Purfürst B, Pezzutto A, Paul F, Niendorf T, Waiczies S - PLoS ONE (2011)

Larger perfluorocarbon particles hinder DC phagocytic activity but promote T cell response.(A) DC were incubated with/without 19F particles (560 nm) and ovalbumin (OVA) peptide and then co-incubated with naïve CD8+ T cells (CD8+CD44-CD62L+). Shown is the proliferation of CD8+ T cells measured in cpm (counts per minute) using a standard 3H-thymidine incorporation assay. This experiment is representative of 3 independent experiments. (B) DC were incubated with 19F particles (560 nm) over a period of time and their phagocytic capacity measured using a FITC-dextran incorporation assay. The fluorescence intensity of FITC-dextran in CD11c+ DC was measured by FACS analysis. This experiment is representative of 4 independent experiments. (C) DC were incubated with 19F particles (560 nm) and full-length endotoxin-free ovalbumin. Thereafter DC were co-incubated with B3Z T cells. Shown is an X-Gal staining of activated, β-galactosidase expressing (blue) B3Z T cells. This experiment is representative of 2 independent experiments. (D) DC were treated with 19F particles and full-length ovalbumin, thereafter co-incubated with B3Z T cells as in C. To quantify T cell activation, the amount of soluble IL-2 in the cell culture supernatants was measured by ELISA. This experiment is representative of 3 independent experiments.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3139612&req=5

pone-0021981-g004: Larger perfluorocarbon particles hinder DC phagocytic activity but promote T cell response.(A) DC were incubated with/without 19F particles (560 nm) and ovalbumin (OVA) peptide and then co-incubated with naïve CD8+ T cells (CD8+CD44-CD62L+). Shown is the proliferation of CD8+ T cells measured in cpm (counts per minute) using a standard 3H-thymidine incorporation assay. This experiment is representative of 3 independent experiments. (B) DC were incubated with 19F particles (560 nm) over a period of time and their phagocytic capacity measured using a FITC-dextran incorporation assay. The fluorescence intensity of FITC-dextran in CD11c+ DC was measured by FACS analysis. This experiment is representative of 4 independent experiments. (C) DC were incubated with 19F particles (560 nm) and full-length endotoxin-free ovalbumin. Thereafter DC were co-incubated with B3Z T cells. Shown is an X-Gal staining of activated, β-galactosidase expressing (blue) B3Z T cells. This experiment is representative of 2 independent experiments. (D) DC were treated with 19F particles and full-length ovalbumin, thereafter co-incubated with B3Z T cells as in C. To quantify T cell activation, the amount of soluble IL-2 in the cell culture supernatants was measured by ELISA. This experiment is representative of 3 independent experiments.
Mentions: CD86 (B7.2) provides the dominant costimulatory signal during early T cell activation [14]. Indeed an increased expression of CD86 on DC following treatment with the 560 nm PFCE particles was accompanied by an increase in priming of antigen-specific T cells by these DC (Fig. 4A). Naïve CD8+ T cells from C57BL/6-Tg(OT-I)-RAG1tm1Mom mice primed with DC loaded for 2 h with OVA peptide, 18 h following 19F labeling (CD86hi), proliferated significantly better than CD8+ T cells primed with unlabeled DC (p<0.05) or with DC that had been loaded with OVA peptide 2 h prior to 19F labeling (p<0.001) (Fig. 4A).

Bottom Line: Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm).When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells.Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells.

View Article: PubMed Central - PubMed

Affiliation: Max Delbrück Center for Molecular Medicine and Charité Medical Faculty, Berlin, Germany.

ABSTRACT
The development of cellular tracking by fluorine ((19)F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton ((1)H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by (19)F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the (19)F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models.

Show MeSH
Related in: MedlinePlus