Limits...
Comparative analysis of the volatile fraction of fruit juice from different Citrus species.

González-Mas MC, Rambla JL, Alamar MC, Gutiérrez A, Granell A - PLoS ONE (2011)

Bottom Line: Over one hundred compounds were profiled after HS-SPME-GC-MS analysis, including 27 esters, 23 aldehydes, 21 alcohols, 13 monoterpene hydrocarbons, 10 ketones, 5 sesquiterpene hydrocarbons, 4 monoterpene cyclic ethers, 4 furans, and 2 aromatic hydrocarbons, which were all confirmed with standards.The differences in the volatile profile among juices of these varieties were essentially quantitative and only a few compounds were found exclusively in a single variety, mainly in Chandler.Some compounds (6 esters, 2 ketones, 1 furan and 2 aromatic hydrocarbons) had never been reported earlier in Citrus juices.

View Article: PubMed Central - PubMed

Affiliation: Centro de Citricultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain. gonzalez_mde@gva.es

ABSTRACT
The volatile composition of fruit from four Citrus varieties (Powell Navel orange, Clemenules mandarine, and Fortune mandarine and Chandler pummelo) covering four different species has been studied. Over one hundred compounds were profiled after HS-SPME-GC-MS analysis, including 27 esters, 23 aldehydes, 21 alcohols, 13 monoterpene hydrocarbons, 10 ketones, 5 sesquiterpene hydrocarbons, 4 monoterpene cyclic ethers, 4 furans, and 2 aromatic hydrocarbons, which were all confirmed with standards. The differences in the volatile profile among juices of these varieties were essentially quantitative and only a few compounds were found exclusively in a single variety, mainly in Chandler. The volatile profile however was able to differentiate all four varieties and revealed complex interactions between them including the participation in the same biosynthetic pathway. Some compounds (6 esters, 2 ketones, 1 furan and 2 aromatic hydrocarbons) had never been reported earlier in Citrus juices. This volatile profiling platform for Citrus juice by HS-SPME-GC-MS and the interrelationship detected among the volatiles can be used as a roadmap for future breeding or biotechnological applications.

Show MeSH

Related in: MedlinePlus

Hierarchical cluster analysis of both samples and identified volatile compounds.Samples grouped themselves by varieties: Ch, Chandler; Cl, Clemenules; F, Fortune; P, Powell. Volatiles grouped in clusters A, B and C, and sub-clusters A1, A2, C1, C2 and C3. Colours in the heatmap mean the fold change, in accordance to the scale in the bottom: red for higher levels; green for lower levels. Colour circles before the name of the compounds describe the chemical family each particular compound belongs to: red, aldehyde; brown, ketone; orange, alcohol; yellow, ester; indigo, furan; pink, aromatic hydrocarbon; light green, monoterpene hydrocarbon; dark green, monoterpene cyclic ether; blue, sesquiterpene.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3139606&req=5

pone-0022016-g003: Hierarchical cluster analysis of both samples and identified volatile compounds.Samples grouped themselves by varieties: Ch, Chandler; Cl, Clemenules; F, Fortune; P, Powell. Volatiles grouped in clusters A, B and C, and sub-clusters A1, A2, C1, C2 and C3. Colours in the heatmap mean the fold change, in accordance to the scale in the bottom: red for higher levels; green for lower levels. Colour circles before the name of the compounds describe the chemical family each particular compound belongs to: red, aldehyde; brown, ketone; orange, alcohol; yellow, ester; indigo, furan; pink, aromatic hydrocarbon; light green, monoterpene hydrocarbon; dark green, monoterpene cyclic ether; blue, sesquiterpene.

Mentions: A hierarchical cluster analysis confirmed that Clemenules and Fortune presented the most similar volatile profile, while Chandler pummelo exhibited the most differential profile of them all (Figure 3). According to the pattern of VOCs presented by these four varieties, volatile compounds can be organized in three clusters, named A, B and C, with some sub-clusters (named A1, A2, C1, C2 and C3). It is therefore revealed that clusters of VOCs with differential accumulation levels rather than a few individual compounds are responsible for the separation between varieties. For the sake of clarity, compounds in Table 1 are displayed according to the same order than in the hierarchical cluster.


Comparative analysis of the volatile fraction of fruit juice from different Citrus species.

González-Mas MC, Rambla JL, Alamar MC, Gutiérrez A, Granell A - PLoS ONE (2011)

Hierarchical cluster analysis of both samples and identified volatile compounds.Samples grouped themselves by varieties: Ch, Chandler; Cl, Clemenules; F, Fortune; P, Powell. Volatiles grouped in clusters A, B and C, and sub-clusters A1, A2, C1, C2 and C3. Colours in the heatmap mean the fold change, in accordance to the scale in the bottom: red for higher levels; green for lower levels. Colour circles before the name of the compounds describe the chemical family each particular compound belongs to: red, aldehyde; brown, ketone; orange, alcohol; yellow, ester; indigo, furan; pink, aromatic hydrocarbon; light green, monoterpene hydrocarbon; dark green, monoterpene cyclic ether; blue, sesquiterpene.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3139606&req=5

pone-0022016-g003: Hierarchical cluster analysis of both samples and identified volatile compounds.Samples grouped themselves by varieties: Ch, Chandler; Cl, Clemenules; F, Fortune; P, Powell. Volatiles grouped in clusters A, B and C, and sub-clusters A1, A2, C1, C2 and C3. Colours in the heatmap mean the fold change, in accordance to the scale in the bottom: red for higher levels; green for lower levels. Colour circles before the name of the compounds describe the chemical family each particular compound belongs to: red, aldehyde; brown, ketone; orange, alcohol; yellow, ester; indigo, furan; pink, aromatic hydrocarbon; light green, monoterpene hydrocarbon; dark green, monoterpene cyclic ether; blue, sesquiterpene.
Mentions: A hierarchical cluster analysis confirmed that Clemenules and Fortune presented the most similar volatile profile, while Chandler pummelo exhibited the most differential profile of them all (Figure 3). According to the pattern of VOCs presented by these four varieties, volatile compounds can be organized in three clusters, named A, B and C, with some sub-clusters (named A1, A2, C1, C2 and C3). It is therefore revealed that clusters of VOCs with differential accumulation levels rather than a few individual compounds are responsible for the separation between varieties. For the sake of clarity, compounds in Table 1 are displayed according to the same order than in the hierarchical cluster.

Bottom Line: Over one hundred compounds were profiled after HS-SPME-GC-MS analysis, including 27 esters, 23 aldehydes, 21 alcohols, 13 monoterpene hydrocarbons, 10 ketones, 5 sesquiterpene hydrocarbons, 4 monoterpene cyclic ethers, 4 furans, and 2 aromatic hydrocarbons, which were all confirmed with standards.The differences in the volatile profile among juices of these varieties were essentially quantitative and only a few compounds were found exclusively in a single variety, mainly in Chandler.Some compounds (6 esters, 2 ketones, 1 furan and 2 aromatic hydrocarbons) had never been reported earlier in Citrus juices.

View Article: PubMed Central - PubMed

Affiliation: Centro de Citricultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain. gonzalez_mde@gva.es

ABSTRACT
The volatile composition of fruit from four Citrus varieties (Powell Navel orange, Clemenules mandarine, and Fortune mandarine and Chandler pummelo) covering four different species has been studied. Over one hundred compounds were profiled after HS-SPME-GC-MS analysis, including 27 esters, 23 aldehydes, 21 alcohols, 13 monoterpene hydrocarbons, 10 ketones, 5 sesquiterpene hydrocarbons, 4 monoterpene cyclic ethers, 4 furans, and 2 aromatic hydrocarbons, which were all confirmed with standards. The differences in the volatile profile among juices of these varieties were essentially quantitative and only a few compounds were found exclusively in a single variety, mainly in Chandler. The volatile profile however was able to differentiate all four varieties and revealed complex interactions between them including the participation in the same biosynthetic pathway. Some compounds (6 esters, 2 ketones, 1 furan and 2 aromatic hydrocarbons) had never been reported earlier in Citrus juices. This volatile profiling platform for Citrus juice by HS-SPME-GC-MS and the interrelationship detected among the volatiles can be used as a roadmap for future breeding or biotechnological applications.

Show MeSH
Related in: MedlinePlus