Limits...
Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.

Pei N, Lian JY, Erickson DL, Swenson NG, Kress WJ, Ye WH, Ge XJ - PLoS ONE (2011)

Bottom Line: We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats) and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny.In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities.Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China.

ABSTRACT
Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats) and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

Show MeSH
The spatial patterns of NRI and NTI values in the forest plot.Values of NRI and NTI for each 400 m2 quadrat in the 20-ha forest dynamics plot in Dinghushan, south China, are calculated using the molecular phylogeny and the Phylomatic phylogeny. Negative NRI and NTI values indicate phylogenetic overdispersion and positive values indicate phylogenetic clustering. The color scales across all NRI and NTI maps are made equivalent to allow for direct visual comparisons between the four maps. a. Barcode NRI; b. Phylomatic NRI; c. Barcode NTI; d. Phylomatic NTI
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3119057&req=5

pone-0021273-g003: The spatial patterns of NRI and NTI values in the forest plot.Values of NRI and NTI for each 400 m2 quadrat in the 20-ha forest dynamics plot in Dinghushan, south China, are calculated using the molecular phylogeny and the Phylomatic phylogeny. Negative NRI and NTI values indicate phylogenetic overdispersion and positive values indicate phylogenetic clustering. The color scales across all NRI and NTI maps are made equivalent to allow for direct visual comparisons between the four maps. a. Barcode NRI; b. Phylomatic NRI; c. Barcode NTI; d. Phylomatic NTI

Mentions: A total of five habitat types were classified in the DHS FDP and they are mapped using different colors in Fig. 2. The Net Relatedness Index (NRI) value and the Nearest Taxon Index (NTI) value in each quadrat is marked in the 20-ha plot in Fig. 3. The results from the Phylomatic phylogeny found phylogenetic clustering in the valley habitat using both the NRI and the NTI metrics, and in the low-slope habitat using the NRI metric. Phylogenetic overdispersion was found in the high-gully, the high-slope, and the ridge-top habitats using both the NRI and NTI metrics (Table 4 and Fig. 3). When using the molecular phylogeny, we found significant phylogenetic structuring in six of the 10 tests (two metrics per habitat type). Specifically we found phylogenetic clustering in the valley and the low-slope habitats, phylogenetic overdispersion in the high-slope and the ridge-top habitats, and a phylogenetically random pattern in the high-gully habitat using both the NRI and the NTI metrics.


Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.

Pei N, Lian JY, Erickson DL, Swenson NG, Kress WJ, Ye WH, Ge XJ - PLoS ONE (2011)

The spatial patterns of NRI and NTI values in the forest plot.Values of NRI and NTI for each 400 m2 quadrat in the 20-ha forest dynamics plot in Dinghushan, south China, are calculated using the molecular phylogeny and the Phylomatic phylogeny. Negative NRI and NTI values indicate phylogenetic overdispersion and positive values indicate phylogenetic clustering. The color scales across all NRI and NTI maps are made equivalent to allow for direct visual comparisons between the four maps. a. Barcode NRI; b. Phylomatic NRI; c. Barcode NTI; d. Phylomatic NTI
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3119057&req=5

pone-0021273-g003: The spatial patterns of NRI and NTI values in the forest plot.Values of NRI and NTI for each 400 m2 quadrat in the 20-ha forest dynamics plot in Dinghushan, south China, are calculated using the molecular phylogeny and the Phylomatic phylogeny. Negative NRI and NTI values indicate phylogenetic overdispersion and positive values indicate phylogenetic clustering. The color scales across all NRI and NTI maps are made equivalent to allow for direct visual comparisons between the four maps. a. Barcode NRI; b. Phylomatic NRI; c. Barcode NTI; d. Phylomatic NTI
Mentions: A total of five habitat types were classified in the DHS FDP and they are mapped using different colors in Fig. 2. The Net Relatedness Index (NRI) value and the Nearest Taxon Index (NTI) value in each quadrat is marked in the 20-ha plot in Fig. 3. The results from the Phylomatic phylogeny found phylogenetic clustering in the valley habitat using both the NRI and the NTI metrics, and in the low-slope habitat using the NRI metric. Phylogenetic overdispersion was found in the high-gully, the high-slope, and the ridge-top habitats using both the NRI and NTI metrics (Table 4 and Fig. 3). When using the molecular phylogeny, we found significant phylogenetic structuring in six of the 10 tests (two metrics per habitat type). Specifically we found phylogenetic clustering in the valley and the low-slope habitats, phylogenetic overdispersion in the high-slope and the ridge-top habitats, and a phylogenetically random pattern in the high-gully habitat using both the NRI and the NTI metrics.

Bottom Line: We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats) and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny.In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities.Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China.

ABSTRACT
Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats) and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

Show MeSH