Limits...
Small interference RNA targeting tissue factor inhibits human lung adenocarcinoma growth in vitro and in vivo.

Xu C, Gui Q, Chen W, Wu L, Sun W, Zhang N, Xu Q, Wang J, Fu X - J. Exp. Clin. Cancer Res. (2011)

Bottom Line: TF -siRNA significantly reduced the expression of TF in the mRNA and protein levels.The down-regulation of TF in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis in dose-dependent manner.Erk MAPK, PI3K/Akt pathways as well as VEGF and MMP-2/-9 expressions were inhibited in TF-siRNA transfected cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of General Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

ABSTRACT

Background: The human coagulation trigger tissue factor (TF) is overexpressed in several types of cancer and involved in tumor growth, vascularization, and metastasis. To explore the role of TF in biological processes of lung adenocarcinoma, we used RNA interference (RNAi) technology to silence TF in a lung adenocarcinoma cell line A549 with high-level expression of TF and evaluate its antitumor effects in vitro and in vivo.

Methods: The specific small interfering RNA (siRNA) designed for targeting human TF was transfected into A549 cells. The expression of TF was detected by reverse transcription-PCR and Western blot. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The metastatic potential of A549 cells was determined by wound healing, the mobility and Matrigel invasion assays. Expressions of PI3K/Akt, Erk1/2, VEGF and MMP-2/-9 in transfected cells were detected by Western blot. In vivo, the effect of TF-siRNA on the growth of A549 lung adenocarcinoma xenografts in nude mice was investigated.

Results: TF -siRNA significantly reduced the expression of TF in the mRNA and protein levels. The down-regulation of TF in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis in dose-dependent manner. Erk MAPK, PI3K/Akt pathways as well as VEGF and MMP-2/-9 expressions were inhibited in TF-siRNA transfected cells. Moreover, intratumoral injection of siRNA targeting TF suppressed the tumor growth of A549 cells in vivo model of lung adenocarcinoma.

Conclusions: Down-regulation of TF using siRNA could provide a potential approach for gene therapy against lung adenocarcinoma, and the antitumor effects may be associated with inhibition of Erk MAPK, PI3K/Akt pathways.

Show MeSH

Related in: MedlinePlus

Tumor volume curve and bar graph of tumor weight on the 42nd day when mice were killed. (A): The curve showed that the tumor growth of SiTF group from days 22 to the end was significantly inhibited compared to that of control and mock groups. (B): Bar represented that the tumor weight of SiTF group was decreased than that of control and mock group. **P < 0.01 versus mock.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3118969&req=5

Figure 18: Tumor volume curve and bar graph of tumor weight on the 42nd day when mice were killed. (A): The curve showed that the tumor growth of SiTF group from days 22 to the end was significantly inhibited compared to that of control and mock groups. (B): Bar represented that the tumor weight of SiTF group was decreased than that of control and mock group. **P < 0.01 versus mock.

Mentions: Intratumoral injection with TF-siRNA was performed to investigate whether TF-siRNA had the effect of inhibition on tumor growth in vivo. A nude-mouse model of human lung adenocarcinoma xenograft was established, and when the tumor volume reached 50-100 mm3, intratumoral treatment with TF-siRNAs was started and repeated every 5 days for a total of 5 times. As shown in Figure 18A, the tumor volume of SiTF group from days 22 to the end was significantly smaller than control and mock groups, whereas there was no statistical difference between control group and mock group during the experiment. All mice were sacrificed on the 42nd day, and the final tumor volume and weight in SiTF group (209.6 ± 97.6 mm3 and 0.21 ± 0.10 g, n = 5) were markedly smaller than that in control group (600.8 ± 182.0 mm3 and 0.59 ± 0.18 g, n = 5) and mock group (513.8 ± 112.6 mm3 and 0.52 ± 0.12 g, n = 5) (Figure 18 and Figure 19). In addition, the relative protein expression of TF in SiTF group was decreased significantly, but there was no statistical significance between control group and mock group (Figure 20). After all, these results indicated that intratumoral injection with TF-siRNA suppressed the tumor growth of lung adenocarcinoma cells in vivo.


Small interference RNA targeting tissue factor inhibits human lung adenocarcinoma growth in vitro and in vivo.

Xu C, Gui Q, Chen W, Wu L, Sun W, Zhang N, Xu Q, Wang J, Fu X - J. Exp. Clin. Cancer Res. (2011)

Tumor volume curve and bar graph of tumor weight on the 42nd day when mice were killed. (A): The curve showed that the tumor growth of SiTF group from days 22 to the end was significantly inhibited compared to that of control and mock groups. (B): Bar represented that the tumor weight of SiTF group was decreased than that of control and mock group. **P < 0.01 versus mock.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3118969&req=5

Figure 18: Tumor volume curve and bar graph of tumor weight on the 42nd day when mice were killed. (A): The curve showed that the tumor growth of SiTF group from days 22 to the end was significantly inhibited compared to that of control and mock groups. (B): Bar represented that the tumor weight of SiTF group was decreased than that of control and mock group. **P < 0.01 versus mock.
Mentions: Intratumoral injection with TF-siRNA was performed to investigate whether TF-siRNA had the effect of inhibition on tumor growth in vivo. A nude-mouse model of human lung adenocarcinoma xenograft was established, and when the tumor volume reached 50-100 mm3, intratumoral treatment with TF-siRNAs was started and repeated every 5 days for a total of 5 times. As shown in Figure 18A, the tumor volume of SiTF group from days 22 to the end was significantly smaller than control and mock groups, whereas there was no statistical difference between control group and mock group during the experiment. All mice were sacrificed on the 42nd day, and the final tumor volume and weight in SiTF group (209.6 ± 97.6 mm3 and 0.21 ± 0.10 g, n = 5) were markedly smaller than that in control group (600.8 ± 182.0 mm3 and 0.59 ± 0.18 g, n = 5) and mock group (513.8 ± 112.6 mm3 and 0.52 ± 0.12 g, n = 5) (Figure 18 and Figure 19). In addition, the relative protein expression of TF in SiTF group was decreased significantly, but there was no statistical significance between control group and mock group (Figure 20). After all, these results indicated that intratumoral injection with TF-siRNA suppressed the tumor growth of lung adenocarcinoma cells in vivo.

Bottom Line: TF -siRNA significantly reduced the expression of TF in the mRNA and protein levels.The down-regulation of TF in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis in dose-dependent manner.Erk MAPK, PI3K/Akt pathways as well as VEGF and MMP-2/-9 expressions were inhibited in TF-siRNA transfected cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of General Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

ABSTRACT

Background: The human coagulation trigger tissue factor (TF) is overexpressed in several types of cancer and involved in tumor growth, vascularization, and metastasis. To explore the role of TF in biological processes of lung adenocarcinoma, we used RNA interference (RNAi) technology to silence TF in a lung adenocarcinoma cell line A549 with high-level expression of TF and evaluate its antitumor effects in vitro and in vivo.

Methods: The specific small interfering RNA (siRNA) designed for targeting human TF was transfected into A549 cells. The expression of TF was detected by reverse transcription-PCR and Western blot. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The metastatic potential of A549 cells was determined by wound healing, the mobility and Matrigel invasion assays. Expressions of PI3K/Akt, Erk1/2, VEGF and MMP-2/-9 in transfected cells were detected by Western blot. In vivo, the effect of TF-siRNA on the growth of A549 lung adenocarcinoma xenografts in nude mice was investigated.

Results: TF -siRNA significantly reduced the expression of TF in the mRNA and protein levels. The down-regulation of TF in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis in dose-dependent manner. Erk MAPK, PI3K/Akt pathways as well as VEGF and MMP-2/-9 expressions were inhibited in TF-siRNA transfected cells. Moreover, intratumoral injection of siRNA targeting TF suppressed the tumor growth of A549 cells in vivo model of lung adenocarcinoma.

Conclusions: Down-regulation of TF using siRNA could provide a potential approach for gene therapy against lung adenocarcinoma, and the antitumor effects may be associated with inhibition of Erk MAPK, PI3K/Akt pathways.

Show MeSH
Related in: MedlinePlus