Limits...
An optimal centralized carbon dioxide repository for Florida, USA.

Poiencot B, Brown C - Int J Environ Res Public Health (2011)

Bottom Line: For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration.Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites.The identification of the most favorable site(s) is also presented.

View Article: PubMed Central - PubMed

Affiliation: School of Engineering, University of North Florida, Building 50, 1 UNF Drive, Jacksonville, FL 32224, USA. Brandon.poiencot@unf.edu

ABSTRACT
For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida's electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels), from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s) is also presented.

Show MeSH
Simulation results Years 1 to 13.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3118873&req=5

f5-ijerph-08-00955: Simulation results Years 1 to 13.

Mentions: Following model development and testing, the preliminary optimal pipeline network was determined. Due to the high CO2 disposal area capacity at each proposed Florida repository location, the least-cost network model resulted in the use of all 5 repositories. Initially, in years 1 to 13, the proposed offshore repository was not utilized at all in the optimal network due to high unit costs for underwater pipeline installations. The underwater cost differential would have to be reduced by more than 30% for the offshore repository to be cost-effective during this timeframe. However, at the beginning of year 15, DA4 capacity is filled and CO2 flows initially directed to DA4 shift to DA2, DA3, and DA5. During years 1 to 13, the model indicated that approximately 7.62% of the modeled emissions were transported to DA1, 14.05% to DA2, 58.63% to DA4, and 19.70% to DA5. The results for years 1 to 13 are shown in Table 3 and graphically presented on Figure 5. In year 14, as DA4 fills up, the model indicated that approximately 7.62% of the modeled emissions were transported to DA1, 34.09% to DA2, 7.28% to DA3, 31.32% to DA4, and 19.70% to DA5. In years 15 to 22, the model indicated that approximately 7.62% of the modeled emissions were transported to DA1, 38.39% to DA2, 16.45% to DA3, and 37.54% to DA5. During year 23, DA1 is filled to capacity. In year 23, as DA1 fills up, the model indicated that approximately 3.04% of the modeled emissions were transported to DA1, 42.97% to DA2, 16.45% to DA3, and 37.54% to DA5. During the last 2 years of the model simulation, only three repositories are available and the remaining flows that went to DA1 instead are directed to DA2. During the initial years of the simulation (years 1 to 13) none of the 5 initial disposal areas is filled within the simulation period, repository capacity was not a model constraint so each of the 4 sites that were utilized received CO2 from emission sources closest to that site. For example, DA2 received all of its CO2 from large power plants in the Jacksonville, Florida area. Likewise, DA5 received all of its CO2 from large power plants in the Miami-Fort Lauderdale, Florida area. Additional research is warranted regarding maximum injection rates that can be sustained in each repository area as this may also affect the ultimate site feasibility. The optimal network included 5 out of the 5 simulated repository sites. If only one of the sites could be permitted and developed [42], it appears the most favorable site within Florida would be DA4, located south of Interstate 4 in Osceola County, Florida. This repository site will be further explored in future modeling to be completed as part of this research effort since under current capacity estimates; this site is filled within 14 years. One additional modeling scenario was generated that assumed that repositories 1, 4, and 5 were either filled or could not be permitted. Under these assumptions, almost 65% of the CO2 emissions would be transported to DA2 with the remainder going to DA3. Since a large flow is targeted to DA3, the offshore site, unit levelized costs would almost triple to $6.18 per tonne of CO2. In addition, future modeling efforts will evaluate an alternate pipeline network for Florida that will likely run along existing transportation right-of-ways (ROW) within Florida. This network will also combine smaller emission sites into “emission zones” where smaller contributing power plants will simply tap into larger diameter CO2 pressure mains emanating from the major emission loads. It is expected that this next generation optimization model will further reduce the overall projected cost for a Florida-wide pipeline network. Future modeling efforts may also need to include allowances for emission growth as Florida has experienced in the past. Florida’s gross GHG emissions are rising faster than those of the nation as a whole (gross emissions exclude carbon sinks, such as forests). Florida’s gross greenhouse gas emissions increased by about 35% from 1990 to 2005, while national emissions rose by 16% from 1990 to 2005 [43]. The growth in Florida’s emissions from 1990 to 2005 is primarily associated with the electricity consumption and transportation sectors [43]. The effect of alternative energy and nuclear projects under development in Florida may also impact the analysis by actually reducing the overall emissions. Future modeling efforts should also include a factor that weights the emission sources by their probability of using CCS. Also, future models should also evaluate the actual surface “footprint” of the CO2 in order to refine the estimated repository capacity [44].


An optimal centralized carbon dioxide repository for Florida, USA.

Poiencot B, Brown C - Int J Environ Res Public Health (2011)

Simulation results Years 1 to 13.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3118873&req=5

f5-ijerph-08-00955: Simulation results Years 1 to 13.
Mentions: Following model development and testing, the preliminary optimal pipeline network was determined. Due to the high CO2 disposal area capacity at each proposed Florida repository location, the least-cost network model resulted in the use of all 5 repositories. Initially, in years 1 to 13, the proposed offshore repository was not utilized at all in the optimal network due to high unit costs for underwater pipeline installations. The underwater cost differential would have to be reduced by more than 30% for the offshore repository to be cost-effective during this timeframe. However, at the beginning of year 15, DA4 capacity is filled and CO2 flows initially directed to DA4 shift to DA2, DA3, and DA5. During years 1 to 13, the model indicated that approximately 7.62% of the modeled emissions were transported to DA1, 14.05% to DA2, 58.63% to DA4, and 19.70% to DA5. The results for years 1 to 13 are shown in Table 3 and graphically presented on Figure 5. In year 14, as DA4 fills up, the model indicated that approximately 7.62% of the modeled emissions were transported to DA1, 34.09% to DA2, 7.28% to DA3, 31.32% to DA4, and 19.70% to DA5. In years 15 to 22, the model indicated that approximately 7.62% of the modeled emissions were transported to DA1, 38.39% to DA2, 16.45% to DA3, and 37.54% to DA5. During year 23, DA1 is filled to capacity. In year 23, as DA1 fills up, the model indicated that approximately 3.04% of the modeled emissions were transported to DA1, 42.97% to DA2, 16.45% to DA3, and 37.54% to DA5. During the last 2 years of the model simulation, only three repositories are available and the remaining flows that went to DA1 instead are directed to DA2. During the initial years of the simulation (years 1 to 13) none of the 5 initial disposal areas is filled within the simulation period, repository capacity was not a model constraint so each of the 4 sites that were utilized received CO2 from emission sources closest to that site. For example, DA2 received all of its CO2 from large power plants in the Jacksonville, Florida area. Likewise, DA5 received all of its CO2 from large power plants in the Miami-Fort Lauderdale, Florida area. Additional research is warranted regarding maximum injection rates that can be sustained in each repository area as this may also affect the ultimate site feasibility. The optimal network included 5 out of the 5 simulated repository sites. If only one of the sites could be permitted and developed [42], it appears the most favorable site within Florida would be DA4, located south of Interstate 4 in Osceola County, Florida. This repository site will be further explored in future modeling to be completed as part of this research effort since under current capacity estimates; this site is filled within 14 years. One additional modeling scenario was generated that assumed that repositories 1, 4, and 5 were either filled or could not be permitted. Under these assumptions, almost 65% of the CO2 emissions would be transported to DA2 with the remainder going to DA3. Since a large flow is targeted to DA3, the offshore site, unit levelized costs would almost triple to $6.18 per tonne of CO2. In addition, future modeling efforts will evaluate an alternate pipeline network for Florida that will likely run along existing transportation right-of-ways (ROW) within Florida. This network will also combine smaller emission sites into “emission zones” where smaller contributing power plants will simply tap into larger diameter CO2 pressure mains emanating from the major emission loads. It is expected that this next generation optimization model will further reduce the overall projected cost for a Florida-wide pipeline network. Future modeling efforts may also need to include allowances for emission growth as Florida has experienced in the past. Florida’s gross GHG emissions are rising faster than those of the nation as a whole (gross emissions exclude carbon sinks, such as forests). Florida’s gross greenhouse gas emissions increased by about 35% from 1990 to 2005, while national emissions rose by 16% from 1990 to 2005 [43]. The growth in Florida’s emissions from 1990 to 2005 is primarily associated with the electricity consumption and transportation sectors [43]. The effect of alternative energy and nuclear projects under development in Florida may also impact the analysis by actually reducing the overall emissions. Future modeling efforts should also include a factor that weights the emission sources by their probability of using CCS. Also, future models should also evaluate the actual surface “footprint” of the CO2 in order to refine the estimated repository capacity [44].

Bottom Line: For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration.Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites.The identification of the most favorable site(s) is also presented.

View Article: PubMed Central - PubMed

Affiliation: School of Engineering, University of North Florida, Building 50, 1 UNF Drive, Jacksonville, FL 32224, USA. Brandon.poiencot@unf.edu

ABSTRACT
For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida's electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels), from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s) is also presented.

Show MeSH