Limits...
The role of nuclear imaging in the failing heart: myocardial blood flow, sympathetic innervation, and future applications.

Boogers MJ, Fukushima K, Bengel FM, Bax JJ - Heart Fail Rev (2011)

Bottom Line: Currently, sympathetic nerve imaging with 123-iodine metaiodobenzylguanidine (123-I MIBG) is often used for the assessment of cardiac innervation.A large number of studies have shown that an abnormal myocardial sympathetic innervation, as assessed with 123-I MIBG imaging, is associated with increased mortality and morbidity rates in patients with heart failure.Also, cardiac 123-I MIBG imaging can be used to risk stratify patients for ventricular arrhythmias or sudden cardiac death.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands. j.m.j.boogers@lumc.nl

ABSTRACT
Heart failure represents a common disease affecting approximately 5 million patients in the United States. Several conditions play an important role in the development and progression of heart failure, including abnormalities in myocardial blood flow and sympathetic innervation. Nuclear imaging represents the only imaging modality with sufficient sensitivity to assess myocardial blood flow and sympathetic innervation of the failing heart. Although nuclear imaging with single-photon emission computed tomography (SPECT) is most commonly used for the evaluation of myocardial perfusion, positron emission tomography (PET) allows absolute quantification of myocardial blood flow beyond the assessment of relative myocardial perfusion. Both techniques can be used for evaluation of diagnosis, treatment options, and prognosis in heart failure patients. Besides myocardial blood flow, cardiac sympathetic innervation represents another important parameter in patients with heart failure. Currently, sympathetic nerve imaging with 123-iodine metaiodobenzylguanidine (123-I MIBG) is often used for the assessment of cardiac innervation. A large number of studies have shown that an abnormal myocardial sympathetic innervation, as assessed with 123-I MIBG imaging, is associated with increased mortality and morbidity rates in patients with heart failure. Also, cardiac 123-I MIBG imaging can be used to risk stratify patients for ventricular arrhythmias or sudden cardiac death. Furthermore, novel nuclear imaging techniques are being developed that may provide more detailed information for the detection of heart failure in an early phase as well as for monitoring the effects of new therapeutic interventions in patients with heart failure.

Show MeSH

Related in: MedlinePlus

Cardiac 123-iodine metaiodobenzylguanidine (123-I MIBG) planar imaging in patients with (n = 18) and without (n = 88) sudden cardiac death. Myocardial washout rate was significantly higher in patients with sudden cardiac death when compared to patients without sudden cardiac death (39.9 ± 15.2% vs. 27.6 ± 14.2%, P = 0.0013) during a mean follow-up period of 65 ± 31 months. Data were based on reference 45
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3118005&req=5

Fig5: Cardiac 123-iodine metaiodobenzylguanidine (123-I MIBG) planar imaging in patients with (n = 18) and without (n = 88) sudden cardiac death. Myocardial washout rate was significantly higher in patients with sudden cardiac death when compared to patients without sudden cardiac death (39.9 ± 15.2% vs. 27.6 ± 14.2%, P = 0.0013) during a mean follow-up period of 65 ± 31 months. Data were based on reference 45

Mentions: Beyond regional sympathetic denervation, it has been suggested that hyperactivity of the cardiac sympathetic nervous system (increased sympathetic tone) is associated with the occurrence of potential lethal ventricular arrhythmias and sudden cardiac death [45, 48]. Moreover, it has been demonstrated that enhanced activation of beta-adrenergic receptors within the myocardium, which results from a chronic up-regulated sympathetic tone, could initiate ventricular tachycardia via non-reentrant mechanisms in heart failure patients [49]. An important study was performed by Tamaki and colleagues [45] who sought to determine the value of cardiac 123-I MIBG imaging for prediction of sudden arrhythmic death in 106 outpatients with chronic heart failure and LV ejection fraction (LVEF) < 40%. Patients with sudden cardiac death showed significantly lower early (1.72 ± 0.29 vs. 1.87 ± 0.26, P = 0.036) and late (1.54 ± 0.25 vs. 1.76 ± 0.31, P < 0.01) H/M ratio as well as significantly higher myocardial washout rate (39.9 ± 15.2% vs. 27.6 ± 14.2%, P < 0.01), than patients who survived the mean follow-up of 65 ± 31 months, as depicted in Fig. 5. Importantly, only myocardial washout rate (HR = 1.052, 95% CI 1.020–1.085, P < 0.01) and LVEF (HR = 0.930, 95% CI 0.870–0.995, P = 0.0341) were independent predictors for sudden arrhythmic death.Fig. 5


The role of nuclear imaging in the failing heart: myocardial blood flow, sympathetic innervation, and future applications.

Boogers MJ, Fukushima K, Bengel FM, Bax JJ - Heart Fail Rev (2011)

Cardiac 123-iodine metaiodobenzylguanidine (123-I MIBG) planar imaging in patients with (n = 18) and without (n = 88) sudden cardiac death. Myocardial washout rate was significantly higher in patients with sudden cardiac death when compared to patients without sudden cardiac death (39.9 ± 15.2% vs. 27.6 ± 14.2%, P = 0.0013) during a mean follow-up period of 65 ± 31 months. Data were based on reference 45
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3118005&req=5

Fig5: Cardiac 123-iodine metaiodobenzylguanidine (123-I MIBG) planar imaging in patients with (n = 18) and without (n = 88) sudden cardiac death. Myocardial washout rate was significantly higher in patients with sudden cardiac death when compared to patients without sudden cardiac death (39.9 ± 15.2% vs. 27.6 ± 14.2%, P = 0.0013) during a mean follow-up period of 65 ± 31 months. Data were based on reference 45
Mentions: Beyond regional sympathetic denervation, it has been suggested that hyperactivity of the cardiac sympathetic nervous system (increased sympathetic tone) is associated with the occurrence of potential lethal ventricular arrhythmias and sudden cardiac death [45, 48]. Moreover, it has been demonstrated that enhanced activation of beta-adrenergic receptors within the myocardium, which results from a chronic up-regulated sympathetic tone, could initiate ventricular tachycardia via non-reentrant mechanisms in heart failure patients [49]. An important study was performed by Tamaki and colleagues [45] who sought to determine the value of cardiac 123-I MIBG imaging for prediction of sudden arrhythmic death in 106 outpatients with chronic heart failure and LV ejection fraction (LVEF) < 40%. Patients with sudden cardiac death showed significantly lower early (1.72 ± 0.29 vs. 1.87 ± 0.26, P = 0.036) and late (1.54 ± 0.25 vs. 1.76 ± 0.31, P < 0.01) H/M ratio as well as significantly higher myocardial washout rate (39.9 ± 15.2% vs. 27.6 ± 14.2%, P < 0.01), than patients who survived the mean follow-up of 65 ± 31 months, as depicted in Fig. 5. Importantly, only myocardial washout rate (HR = 1.052, 95% CI 1.020–1.085, P < 0.01) and LVEF (HR = 0.930, 95% CI 0.870–0.995, P = 0.0341) were independent predictors for sudden arrhythmic death.Fig. 5

Bottom Line: Currently, sympathetic nerve imaging with 123-iodine metaiodobenzylguanidine (123-I MIBG) is often used for the assessment of cardiac innervation.A large number of studies have shown that an abnormal myocardial sympathetic innervation, as assessed with 123-I MIBG imaging, is associated with increased mortality and morbidity rates in patients with heart failure.Also, cardiac 123-I MIBG imaging can be used to risk stratify patients for ventricular arrhythmias or sudden cardiac death.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands. j.m.j.boogers@lumc.nl

ABSTRACT
Heart failure represents a common disease affecting approximately 5 million patients in the United States. Several conditions play an important role in the development and progression of heart failure, including abnormalities in myocardial blood flow and sympathetic innervation. Nuclear imaging represents the only imaging modality with sufficient sensitivity to assess myocardial blood flow and sympathetic innervation of the failing heart. Although nuclear imaging with single-photon emission computed tomography (SPECT) is most commonly used for the evaluation of myocardial perfusion, positron emission tomography (PET) allows absolute quantification of myocardial blood flow beyond the assessment of relative myocardial perfusion. Both techniques can be used for evaluation of diagnosis, treatment options, and prognosis in heart failure patients. Besides myocardial blood flow, cardiac sympathetic innervation represents another important parameter in patients with heart failure. Currently, sympathetic nerve imaging with 123-iodine metaiodobenzylguanidine (123-I MIBG) is often used for the assessment of cardiac innervation. A large number of studies have shown that an abnormal myocardial sympathetic innervation, as assessed with 123-I MIBG imaging, is associated with increased mortality and morbidity rates in patients with heart failure. Also, cardiac 123-I MIBG imaging can be used to risk stratify patients for ventricular arrhythmias or sudden cardiac death. Furthermore, novel nuclear imaging techniques are being developed that may provide more detailed information for the detection of heart failure in an early phase as well as for monitoring the effects of new therapeutic interventions in patients with heart failure.

Show MeSH
Related in: MedlinePlus