Limits...
Tree edit distance for leaf-labelled trees on free leafset and its comparison with frequent subsplit dissimilarity and popular distance measures.

Koperwas J, Walczak K - BMC Bioinformatics (2011)

Bottom Line: Two of the presented methods carry the most interesting properties.E(3,1) is very discriminative (having a wide range of values) and has a very regular distance distribution which is similar to a normal distribution in its shape and is good both for similar and non-similar trees.NFC(2,1) on the other hand is proportional or nearly proportional to the number of mutation operations used, irrespective of their type.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland. j.koperwas@elka.pw.edu.pl

ABSTRACT

Background: This paper is devoted to distance measures for leaf-labelled trees on free leafset. A leaf-labelled tree is a data structure which is a special type of a tree where only leaves (terminal) nodes are labelled. This data structure is used in bioinformatics for modelling of evolution history of genes and species and also in linguistics for modelling of languages evolution history. Many domain specific problems occur and need to be solved with help of tree postprocessing techniques such as distance measures.

Results: Here we introduce the tree edit distance designed for leaf labelled trees on free leafset, which occurs to be a metric. It is presented together with tree edit consensus tree notion. We provide statistical evaluation of provided measure with respect to R-F, MAST and frequent subsplit based dissimilarity measures as the reference measures.

Conclusions: The tree edit distance was proven to be a metric and has the advantage of using different costs for contraction and pruning, therefore their properties can be tuned depending on the needs of the user. Two of the presented methods carry the most interesting properties. E(3,1) is very discriminative (having a wide range of values) and has a very regular distance distribution which is similar to a normal distribution in its shape and is good both for similar and non-similar trees. NFC(2,1) on the other hand is proportional or nearly proportional to the number of mutation operations used, irrespective of their type.

Show MeSH

Related in: MedlinePlus

Illustration of strict frequent splitset. Trees built from strict frequent splitset of trees T1 and T2 from Fig. 8.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3117735&req=5

Figure 9: Illustration of strict frequent splitset. Trees built from strict frequent splitset of trees T1 and T2 from Fig. 8.

Mentions: For a more difficult example, let us look at trees T1 and T2 from Figure 8: Here, we have three distinct leafsets: {abcde f gh} {abce f gh} {abcde f g} and the intersection: {abce f g}. Therefore as a visualisation we present four trees on these leafsets, as shown in Figure 9.


Tree edit distance for leaf-labelled trees on free leafset and its comparison with frequent subsplit dissimilarity and popular distance measures.

Koperwas J, Walczak K - BMC Bioinformatics (2011)

Illustration of strict frequent splitset. Trees built from strict frequent splitset of trees T1 and T2 from Fig. 8.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3117735&req=5

Figure 9: Illustration of strict frequent splitset. Trees built from strict frequent splitset of trees T1 and T2 from Fig. 8.
Mentions: For a more difficult example, let us look at trees T1 and T2 from Figure 8: Here, we have three distinct leafsets: {abcde f gh} {abce f gh} {abcde f g} and the intersection: {abce f g}. Therefore as a visualisation we present four trees on these leafsets, as shown in Figure 9.

Bottom Line: Two of the presented methods carry the most interesting properties.E(3,1) is very discriminative (having a wide range of values) and has a very regular distance distribution which is similar to a normal distribution in its shape and is good both for similar and non-similar trees.NFC(2,1) on the other hand is proportional or nearly proportional to the number of mutation operations used, irrespective of their type.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland. j.koperwas@elka.pw.edu.pl

ABSTRACT

Background: This paper is devoted to distance measures for leaf-labelled trees on free leafset. A leaf-labelled tree is a data structure which is a special type of a tree where only leaves (terminal) nodes are labelled. This data structure is used in bioinformatics for modelling of evolution history of genes and species and also in linguistics for modelling of languages evolution history. Many domain specific problems occur and need to be solved with help of tree postprocessing techniques such as distance measures.

Results: Here we introduce the tree edit distance designed for leaf labelled trees on free leafset, which occurs to be a metric. It is presented together with tree edit consensus tree notion. We provide statistical evaluation of provided measure with respect to R-F, MAST and frequent subsplit based dissimilarity measures as the reference measures.

Conclusions: The tree edit distance was proven to be a metric and has the advantage of using different costs for contraction and pruning, therefore their properties can be tuned depending on the needs of the user. Two of the presented methods carry the most interesting properties. E(3,1) is very discriminative (having a wide range of values) and has a very regular distance distribution which is similar to a normal distribution in its shape and is good both for similar and non-similar trees. NFC(2,1) on the other hand is proportional or nearly proportional to the number of mutation operations used, irrespective of their type.

Show MeSH
Related in: MedlinePlus