Limits...
Design and characterization of protein-quercetin bioactive nanoparticles.

Fang R, Jing H, Chai Z, Zhao G, Stoll S, Ren F, Liu F, Leng X - J Nanobiotechnology (2011)

Bottom Line: After loading Q, the size was further reduced by 30%.The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions.BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.

View Article: PubMed Central - HTML - PubMed

Affiliation: CAU and ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

ABSTRACT

Background: The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA), lysozyme (Lys), or myoglobin (Mb) used to load hydrophobic drugs such as quercetin (Q) and other flavonoids.

Results: Induced by dimethyl sulfoxide (DMSO), BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated.

Conclusions: BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.

Show MeSH
Fluorescence emission spectra of BSA, Lys, and Mbsystem. The concentration of (A and B) BSA, (A' and B') Lys, or (A'' and B'') Mb was 1.5 × 10-5 mol/L. (A), (A'), and (A'') Effects of DMSO at 27°C. (B), (B'), and (B'') Effects of Q at 27°C. DMSO was maintained at 10%.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3116464&req=5

Figure 13: Fluorescence emission spectra of BSA, Lys, and Mbsystem. The concentration of (A and B) BSA, (A' and B') Lys, or (A'' and B'') Mb was 1.5 × 10-5 mol/L. (A), (A'), and (A'') Effects of DMSO at 27°C. (B), (B'), and (B'') Effects of Q at 27°C. DMSO was maintained at 10%.

Mentions: Figure 13 compares the fluorescence spectra of the D-BSA (A), D-Lys (A'), D-Mb (A''), D-BSA-Q (B), D-Lys-Q (B'), and D-Mb-Q (B'') versus the concentration of DMSO or Q. At an excitation wavelength of 280 nm, native BSA and Lys showed maximum intrinsic fluorescence at 340 nm, while Mb showed a maximum at 328 nm; these are believed to be caused by Trp residues. Of the two Trp residues in BSA, one is located near the surface of the protein molecule; in the case of Lys [38] and Mb [37], three and one Trp residues are respectively located near the surfaces of the molecules. The fluorescence of tyrosine (Tyr) residues (304 nm) was extremely weak and could be neglected. A slight increase in the intensity of fluorescence, as well as a blue shift, was observed when the concentration of DMSO in the BSA and Lys systems was less than 70% (Figures 13A and A'); this indicates that the microenvironment of Trp residues was more hydrophobic. In the case of Mb, a slight increase in fluorescence intensity also occurred, but a red shift, rather than a blue one, was observed (Figure 13A''). This suggests that the Trp residues in Mb were more hydrophilic. These phenomena may have resulted from structural changes in the proteins. When the concentration of DMSO was increased to 70%, a sharp increase in the fluorescence intensity in the Lys and Mb systems (Figures 13A' and A'') was observed, indicating that the surface Trp residues were buried into the protein aggregates [39-41].


Design and characterization of protein-quercetin bioactive nanoparticles.

Fang R, Jing H, Chai Z, Zhao G, Stoll S, Ren F, Liu F, Leng X - J Nanobiotechnology (2011)

Fluorescence emission spectra of BSA, Lys, and Mbsystem. The concentration of (A and B) BSA, (A' and B') Lys, or (A'' and B'') Mb was 1.5 × 10-5 mol/L. (A), (A'), and (A'') Effects of DMSO at 27°C. (B), (B'), and (B'') Effects of Q at 27°C. DMSO was maintained at 10%.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3116464&req=5

Figure 13: Fluorescence emission spectra of BSA, Lys, and Mbsystem. The concentration of (A and B) BSA, (A' and B') Lys, or (A'' and B'') Mb was 1.5 × 10-5 mol/L. (A), (A'), and (A'') Effects of DMSO at 27°C. (B), (B'), and (B'') Effects of Q at 27°C. DMSO was maintained at 10%.
Mentions: Figure 13 compares the fluorescence spectra of the D-BSA (A), D-Lys (A'), D-Mb (A''), D-BSA-Q (B), D-Lys-Q (B'), and D-Mb-Q (B'') versus the concentration of DMSO or Q. At an excitation wavelength of 280 nm, native BSA and Lys showed maximum intrinsic fluorescence at 340 nm, while Mb showed a maximum at 328 nm; these are believed to be caused by Trp residues. Of the two Trp residues in BSA, one is located near the surface of the protein molecule; in the case of Lys [38] and Mb [37], three and one Trp residues are respectively located near the surfaces of the molecules. The fluorescence of tyrosine (Tyr) residues (304 nm) was extremely weak and could be neglected. A slight increase in the intensity of fluorescence, as well as a blue shift, was observed when the concentration of DMSO in the BSA and Lys systems was less than 70% (Figures 13A and A'); this indicates that the microenvironment of Trp residues was more hydrophobic. In the case of Mb, a slight increase in fluorescence intensity also occurred, but a red shift, rather than a blue one, was observed (Figure 13A''). This suggests that the Trp residues in Mb were more hydrophilic. These phenomena may have resulted from structural changes in the proteins. When the concentration of DMSO was increased to 70%, a sharp increase in the fluorescence intensity in the Lys and Mb systems (Figures 13A' and A'') was observed, indicating that the surface Trp residues were buried into the protein aggregates [39-41].

Bottom Line: After loading Q, the size was further reduced by 30%.The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions.BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.

View Article: PubMed Central - HTML - PubMed

Affiliation: CAU and ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

ABSTRACT

Background: The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA), lysozyme (Lys), or myoglobin (Mb) used to load hydrophobic drugs such as quercetin (Q) and other flavonoids.

Results: Induced by dimethyl sulfoxide (DMSO), BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated.

Conclusions: BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.

Show MeSH