Limits...
Nitrogen substituted phenothiazine derivatives: modelling of molecular self-assembling.

Bende A, Turcu I - Int J Mol Sci (2011)

Bottom Line: The conformational stability of these molecular systems is mainly given by the dispersion-type electron correlation effects.The density functional tight-binding (DFTB) method applied for dimer structures are compared with the results obtained by the higher level theoretical methods.Additionally, the optimal configuration of the investigated supramolecular systems and their self-assembling properties are discussed.

View Article: PubMed Central - PubMed

Affiliation: Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donath Street, Nr. 65-103, Ro-400293 Cluj-Napoca, Romania; E-Mail: bende@itim-cj.ro.

ABSTRACT
The study aims to present a detailed theoretical investigation of noncovalent intermolecular interactions between different π-π stacking nitrogen substituted phenothiazine derivatives by applying second-order Møller-Plesset perturbation (MP2), density functional (DFT) and semiempirical theories. The conformational stability of these molecular systems is mainly given by the dispersion-type electron correlation effects. The density functional tight-binding (DFTB) method applied for dimer structures are compared with the results obtained by the higher level theoretical methods. Additionally, the optimal configuration of the investigated supramolecular systems and their self-assembling properties are discussed.

Show MeSH
The intermolecular RH…N coordinate in the PTZ dimer.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3116178&req=5

f5-ijms-12-03102: The intermolecular RH…N coordinate in the PTZ dimer.

Mentions: We consider that in the first case of APTZ the relative rotation of the monomers is not so significant in order to destroy the predisposition for the self-assembling, but in the second case this rotation could be large enough to break the self-assembling. In a later section we have investigated the probability of this assumption by adding alkyl chains to the nitrogen-substituted head-groups. Comparing the d(N···H) distances (measured between the N atom of the first monomer and the H atom belonging to the N–H bond of the second monomer—see Figure 5) for all three monomers (PTZ, APTZ and DAPTZ) we have found that the shortest distance is obtained for the APTZ dimer (d(N···H)APTZ = 3.557 Å). The distance d(N···H)DAPTZ increase to 3.598 and reach 3.665 Å for the PTZ dimer.


Nitrogen substituted phenothiazine derivatives: modelling of molecular self-assembling.

Bende A, Turcu I - Int J Mol Sci (2011)

The intermolecular RH…N coordinate in the PTZ dimer.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3116178&req=5

f5-ijms-12-03102: The intermolecular RH…N coordinate in the PTZ dimer.
Mentions: We consider that in the first case of APTZ the relative rotation of the monomers is not so significant in order to destroy the predisposition for the self-assembling, but in the second case this rotation could be large enough to break the self-assembling. In a later section we have investigated the probability of this assumption by adding alkyl chains to the nitrogen-substituted head-groups. Comparing the d(N···H) distances (measured between the N atom of the first monomer and the H atom belonging to the N–H bond of the second monomer—see Figure 5) for all three monomers (PTZ, APTZ and DAPTZ) we have found that the shortest distance is obtained for the APTZ dimer (d(N···H)APTZ = 3.557 Å). The distance d(N···H)DAPTZ increase to 3.598 and reach 3.665 Å for the PTZ dimer.

Bottom Line: The conformational stability of these molecular systems is mainly given by the dispersion-type electron correlation effects.The density functional tight-binding (DFTB) method applied for dimer structures are compared with the results obtained by the higher level theoretical methods.Additionally, the optimal configuration of the investigated supramolecular systems and their self-assembling properties are discussed.

View Article: PubMed Central - PubMed

Affiliation: Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donath Street, Nr. 65-103, Ro-400293 Cluj-Napoca, Romania; E-Mail: bende@itim-cj.ro.

ABSTRACT
The study aims to present a detailed theoretical investigation of noncovalent intermolecular interactions between different π-π stacking nitrogen substituted phenothiazine derivatives by applying second-order Møller-Plesset perturbation (MP2), density functional (DFT) and semiempirical theories. The conformational stability of these molecular systems is mainly given by the dispersion-type electron correlation effects. The density functional tight-binding (DFTB) method applied for dimer structures are compared with the results obtained by the higher level theoretical methods. Additionally, the optimal configuration of the investigated supramolecular systems and their self-assembling properties are discussed.

Show MeSH