Limits...
Conformationally constrained histidines in the design of peptidomimetics: strategies for the χ-space control.

Stefanucci A, Pinnen F, Feliciani F, Cacciatore I, Lucente G, Mollica A - Int J Mol Sci (2011)

Bottom Line: A successful design of peptidomimetics must come to terms with χ-space control.Structural modifications leading to cyclic imino derivatives such as spinacine, aza-histidine and analogues with shortening or elongation of the native side chain (nor-histidine and homo-histidine, respectively) are also described.Examples of the use of the described analogues to replace native histidine in bioactive peptides are also given.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical Sciences, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy.

ABSTRACT
A successful design of peptidomimetics must come to terms with χ-space control. The incorporation of χ-space constrained amino acids into bioactive peptides renders the χ(1) and χ(2) torsional angles of pharmacophore amino acids critical for activity and selectivity as with other relevant structural features of the template. This review describes histidine analogues characterized by replacement of native α and/or β-hydrogen atoms with alkyl substituents as well as analogues with α, β-didehydro unsaturation or C(α)-C(β) cyclopropane insertion (ACC derivatives). Attention is also dedicated to the relevant field of β-aminoacid chemistry by describing the synthesis of β(2)- and β(3)-models (β-hHis). Structural modifications leading to cyclic imino derivatives such as spinacine, aza-histidine and analogues with shortening or elongation of the native side chain (nor-histidine and homo-histidine, respectively) are also described. Examples of the use of the described analogues to replace native histidine in bioactive peptides are also given.

Show MeSH
Newman projection of three staggered rotamers in l-amino acids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3116161&req=5

f2-ijms-12-02853: Newman projection of three staggered rotamers in l-amino acids.

Mentions: The χ1 torsional angles are well illustrated by referring to the Newman projection (Figure 2). There is an energy barrier between the discrete angles, with values of +60°, −60°, and 180°having the most favorable energies.


Conformationally constrained histidines in the design of peptidomimetics: strategies for the χ-space control.

Stefanucci A, Pinnen F, Feliciani F, Cacciatore I, Lucente G, Mollica A - Int J Mol Sci (2011)

Newman projection of three staggered rotamers in l-amino acids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3116161&req=5

f2-ijms-12-02853: Newman projection of three staggered rotamers in l-amino acids.
Mentions: The χ1 torsional angles are well illustrated by referring to the Newman projection (Figure 2). There is an energy barrier between the discrete angles, with values of +60°, −60°, and 180°having the most favorable energies.

Bottom Line: A successful design of peptidomimetics must come to terms with χ-space control.Structural modifications leading to cyclic imino derivatives such as spinacine, aza-histidine and analogues with shortening or elongation of the native side chain (nor-histidine and homo-histidine, respectively) are also described.Examples of the use of the described analogues to replace native histidine in bioactive peptides are also given.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical Sciences, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy.

ABSTRACT
A successful design of peptidomimetics must come to terms with χ-space control. The incorporation of χ-space constrained amino acids into bioactive peptides renders the χ(1) and χ(2) torsional angles of pharmacophore amino acids critical for activity and selectivity as with other relevant structural features of the template. This review describes histidine analogues characterized by replacement of native α and/or β-hydrogen atoms with alkyl substituents as well as analogues with α, β-didehydro unsaturation or C(α)-C(β) cyclopropane insertion (ACC derivatives). Attention is also dedicated to the relevant field of β-aminoacid chemistry by describing the synthesis of β(2)- and β(3)-models (β-hHis). Structural modifications leading to cyclic imino derivatives such as spinacine, aza-histidine and analogues with shortening or elongation of the native side chain (nor-histidine and homo-histidine, respectively) are also described. Examples of the use of the described analogues to replace native histidine in bioactive peptides are also given.

Show MeSH