Limits...
The antiquity and evolutionary history of social behavior in bees.

Cardinal S, Danforth BN - PLoS ONE (2011)

Bottom Line: We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees.Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior.These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.

View Article: PubMed Central - PubMed

Affiliation: Department of Entomology, Cornell University, Ithaca, New York, United States of America. scc44@cornell.edu

ABSTRACT
A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.

Show MeSH
The evolution of eusociality in Apidae.a) The Bayesian maximum clade credibility tree of Apidae [13]. Posterior probabilities are represented by the thickness of the branches. Character state assignments of the taxa used for the ancestral state reconstruction of the traditional and complex social level character and of the 5 life-history traits are shown to the right of the tree (black = solitary, yellow = social, green = primitively eusocial, blue = advanced eusocial, red = parasitic, light grey = absent, dark grey = present). The character states do not necessarily represent the state of that particular species, but how that terminal taxon was coded to represent the state(s) of the clade it represents. b) Transitions allowed between the four behavioral states in our model-based ancestral state reconstruction of the complex social level character (Sol = solitary, Soc = social, Prim = primitively eusocial, Adv = advanced eusocial, and Paras = parasitic). The model was the same for the traditional behavioral character on level of sociality, but the state social was not included. c–e) Simplified version of the corbiculate phylogeny with pie charts representing the posterior probability of the ancestral state of the node for the c) traditional social level character, d) complex social level character , and e) five life-history traits.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3113908&req=5

pone-0021086-g001: The evolution of eusociality in Apidae.a) The Bayesian maximum clade credibility tree of Apidae [13]. Posterior probabilities are represented by the thickness of the branches. Character state assignments of the taxa used for the ancestral state reconstruction of the traditional and complex social level character and of the 5 life-history traits are shown to the right of the tree (black = solitary, yellow = social, green = primitively eusocial, blue = advanced eusocial, red = parasitic, light grey = absent, dark grey = present). The character states do not necessarily represent the state of that particular species, but how that terminal taxon was coded to represent the state(s) of the clade it represents. b) Transitions allowed between the four behavioral states in our model-based ancestral state reconstruction of the complex social level character (Sol = solitary, Soc = social, Prim = primitively eusocial, Adv = advanced eusocial, and Paras = parasitic). The model was the same for the traditional behavioral character on level of sociality, but the state social was not included. c–e) Simplified version of the corbiculate phylogeny with pie charts representing the posterior probability of the ancestral state of the node for the c) traditional social level character, d) complex social level character , and e) five life-history traits.

Mentions: Based on our model-based ancestral state reconstructions, the common ancestor of the corbiculates is estimated to be primitively eusocial (traditional: Posterior Probability (PP) = 98%, complex: PP = 79%) (Fig. 1c–d, Table S2). The common ancestor of Bombini+Meliponini is also reconstructed as primitively eusocial (traditional: PP = 100%, complex: PP = 68%), as is the common ancestor of Euglossini+Apini under the traditional coding (PP = 75%). Using the complex coding, the social state of the common ancestor of Euglossini+Apini is more ambiguous (53% PP of being social and 32% PP of being primitively eusocial). Allowing a non-zero rate of transition from solitary to advanced eusociality in the traditional analysis reconstructed the ancestral state of the corbiculates as being primitively eusocial with a PP of 86%. These results imply a single origin of eusocial behavior in the corbiculate bees with two independent origins of advanced eusocial behavior (in the stingless bees and honey bees), and a reversal from primitively eusocial (or social) to solitary/communal nesting in some orchid bees.


The antiquity and evolutionary history of social behavior in bees.

Cardinal S, Danforth BN - PLoS ONE (2011)

The evolution of eusociality in Apidae.a) The Bayesian maximum clade credibility tree of Apidae [13]. Posterior probabilities are represented by the thickness of the branches. Character state assignments of the taxa used for the ancestral state reconstruction of the traditional and complex social level character and of the 5 life-history traits are shown to the right of the tree (black = solitary, yellow = social, green = primitively eusocial, blue = advanced eusocial, red = parasitic, light grey = absent, dark grey = present). The character states do not necessarily represent the state of that particular species, but how that terminal taxon was coded to represent the state(s) of the clade it represents. b) Transitions allowed between the four behavioral states in our model-based ancestral state reconstruction of the complex social level character (Sol = solitary, Soc = social, Prim = primitively eusocial, Adv = advanced eusocial, and Paras = parasitic). The model was the same for the traditional behavioral character on level of sociality, but the state social was not included. c–e) Simplified version of the corbiculate phylogeny with pie charts representing the posterior probability of the ancestral state of the node for the c) traditional social level character, d) complex social level character , and e) five life-history traits.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3113908&req=5

pone-0021086-g001: The evolution of eusociality in Apidae.a) The Bayesian maximum clade credibility tree of Apidae [13]. Posterior probabilities are represented by the thickness of the branches. Character state assignments of the taxa used for the ancestral state reconstruction of the traditional and complex social level character and of the 5 life-history traits are shown to the right of the tree (black = solitary, yellow = social, green = primitively eusocial, blue = advanced eusocial, red = parasitic, light grey = absent, dark grey = present). The character states do not necessarily represent the state of that particular species, but how that terminal taxon was coded to represent the state(s) of the clade it represents. b) Transitions allowed between the four behavioral states in our model-based ancestral state reconstruction of the complex social level character (Sol = solitary, Soc = social, Prim = primitively eusocial, Adv = advanced eusocial, and Paras = parasitic). The model was the same for the traditional behavioral character on level of sociality, but the state social was not included. c–e) Simplified version of the corbiculate phylogeny with pie charts representing the posterior probability of the ancestral state of the node for the c) traditional social level character, d) complex social level character , and e) five life-history traits.
Mentions: Based on our model-based ancestral state reconstructions, the common ancestor of the corbiculates is estimated to be primitively eusocial (traditional: Posterior Probability (PP) = 98%, complex: PP = 79%) (Fig. 1c–d, Table S2). The common ancestor of Bombini+Meliponini is also reconstructed as primitively eusocial (traditional: PP = 100%, complex: PP = 68%), as is the common ancestor of Euglossini+Apini under the traditional coding (PP = 75%). Using the complex coding, the social state of the common ancestor of Euglossini+Apini is more ambiguous (53% PP of being social and 32% PP of being primitively eusocial). Allowing a non-zero rate of transition from solitary to advanced eusociality in the traditional analysis reconstructed the ancestral state of the corbiculates as being primitively eusocial with a PP of 86%. These results imply a single origin of eusocial behavior in the corbiculate bees with two independent origins of advanced eusocial behavior (in the stingless bees and honey bees), and a reversal from primitively eusocial (or social) to solitary/communal nesting in some orchid bees.

Bottom Line: We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees.Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior.These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.

View Article: PubMed Central - PubMed

Affiliation: Department of Entomology, Cornell University, Ithaca, New York, United States of America. scc44@cornell.edu

ABSTRACT
A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.

Show MeSH