Limits...
Novel application of cyclolipopeptide amphisin: feasibility study as additive to remediate polycyclic aromatic hydrocarbon (PAH) contaminated sediments.

Groboillot A, Portet-Koltalo F, Le Derf F, Feuilloley MJ, Orange N, Poc CD - Int J Mol Sci (2011)

Bottom Line: Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs) strongly adsorbed to sediments when compared to a synthetic anionic surfactant.DSS73's growth is weakened by three model PAHs above saturation, but amphisin is still produced.Estuarine water feeding the dredged material disposal site of a Norman harbor (France) allows both P. fluorescens DSS73 growth and amphisin production.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Cold Microbiology-Signals and Microenvironment, University of Rouen, EA 4312, 55 rue Saint Germain, 27000 Evreux, France; E-Mails: anne.groboillot@univ-rouen.fr (A.G.); marc.feuilloley@univ-rouen.fr (M.J.G.F.); nicole.orange@univ-rouen.fr (N.O.).

ABSTRACT
To decontaminate dredged harbor sediments by bioremediation or electromigration processes, adding biosurfactants could enhance the bioavailability or mobility of contaminants in an aqueous phase. Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs) strongly adsorbed to sediments when compared to a synthetic anionic surfactant. Amphisin production by the bacteria in the natural environment was also considered. DSS73's growth is weakened by three model PAHs above saturation, but amphisin is still produced. Estuarine water feeding the dredged material disposal site of a Norman harbor (France) allows both P. fluorescens DSS73 growth and amphisin production.

Show MeSH
Growth kinetics of P. fluorescens DSS73 (A) in sterilized or natural estuarine water; (B) in sterilized or unsterilized water supplemented with nutrients, compared to DMB.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3111634&req=5

f7-ijms-12-01787: Growth kinetics of P. fluorescens DSS73 (A) in sterilized or natural estuarine water; (B) in sterilized or unsterilized water supplemented with nutrients, compared to DMB.

Mentions: To approach a more in situ condition, the growth study in limited oxygenation was repeated, this time, with estuarine water feeding the dredged material disposal site of a Norman harbor as growth medium. Several growth experiments were performed with sterilized or crude estuarine water, with or without nutrient addition. In Figure 7, the growth kinetics were plotted in the case of estuarine water without added nutrients (Figure 7A) and supplemented with nutrients (Figure 7B). The addition of nutrients modified the profile of the growth curve. Indeed, P. fluorescens DSS73 growth curves, in Figure 7B, showed two phases with two different μmax (about 0.2 h−1, then 0.1 h−1) separated by a lag phase of 2 h. An explanation of this diauxy phenomenon may be that P. fluorescens DSS73 first metabolized the added nutrients, which acted as a growth stimulant, and then used the estuarine water as the second source nutrients.


Novel application of cyclolipopeptide amphisin: feasibility study as additive to remediate polycyclic aromatic hydrocarbon (PAH) contaminated sediments.

Groboillot A, Portet-Koltalo F, Le Derf F, Feuilloley MJ, Orange N, Poc CD - Int J Mol Sci (2011)

Growth kinetics of P. fluorescens DSS73 (A) in sterilized or natural estuarine water; (B) in sterilized or unsterilized water supplemented with nutrients, compared to DMB.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3111634&req=5

f7-ijms-12-01787: Growth kinetics of P. fluorescens DSS73 (A) in sterilized or natural estuarine water; (B) in sterilized or unsterilized water supplemented with nutrients, compared to DMB.
Mentions: To approach a more in situ condition, the growth study in limited oxygenation was repeated, this time, with estuarine water feeding the dredged material disposal site of a Norman harbor as growth medium. Several growth experiments were performed with sterilized or crude estuarine water, with or without nutrient addition. In Figure 7, the growth kinetics were plotted in the case of estuarine water without added nutrients (Figure 7A) and supplemented with nutrients (Figure 7B). The addition of nutrients modified the profile of the growth curve. Indeed, P. fluorescens DSS73 growth curves, in Figure 7B, showed two phases with two different μmax (about 0.2 h−1, then 0.1 h−1) separated by a lag phase of 2 h. An explanation of this diauxy phenomenon may be that P. fluorescens DSS73 first metabolized the added nutrients, which acted as a growth stimulant, and then used the estuarine water as the second source nutrients.

Bottom Line: Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs) strongly adsorbed to sediments when compared to a synthetic anionic surfactant.DSS73's growth is weakened by three model PAHs above saturation, but amphisin is still produced.Estuarine water feeding the dredged material disposal site of a Norman harbor (France) allows both P. fluorescens DSS73 growth and amphisin production.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Cold Microbiology-Signals and Microenvironment, University of Rouen, EA 4312, 55 rue Saint Germain, 27000 Evreux, France; E-Mails: anne.groboillot@univ-rouen.fr (A.G.); marc.feuilloley@univ-rouen.fr (M.J.G.F.); nicole.orange@univ-rouen.fr (N.O.).

ABSTRACT
To decontaminate dredged harbor sediments by bioremediation or electromigration processes, adding biosurfactants could enhance the bioavailability or mobility of contaminants in an aqueous phase. Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs) strongly adsorbed to sediments when compared to a synthetic anionic surfactant. Amphisin production by the bacteria in the natural environment was also considered. DSS73's growth is weakened by three model PAHs above saturation, but amphisin is still produced. Estuarine water feeding the dredged material disposal site of a Norman harbor (France) allows both P. fluorescens DSS73 growth and amphisin production.

Show MeSH