Limits...
The role of α-dystrobrevin in striated muscle.

Nakamori M, Takahashi MP - Int J Mol Sci (2011)

Bottom Line: Major forms of muscular dystrophies are caused by the abnormalities of the dystrophin glycoprotein complex (DGC) that plays crucial roles as a structural unit and scaffolds for signaling molecules at the sarcolemma. α-Dystrobrevin is a component of the DGC and directly associates with dystrophin. α-Dystrobrevin also binds to intermediate filaments as well as syntrophin, a modular adaptor protein thought to be involved in signaling.Although no muscular dystrophy has been associated within mutations of the α-dystrobrevin gene, emerging findings suggest potential significance of α-dystrobrevin in striated muscle.This review addresses the functional role of α-dystrobrevin in muscle as well as its possible implication for muscular dystrophy.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, Osaka University Graduate School of Medicine, 2-2, D-4, Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mail: masayuki_nakamori@urmc.rochester.edu.

ABSTRACT
Muscular dystrophies are a group of diseases that primarily affect striated muscle and are characterized by the progressive loss of muscle strength and integrity. Major forms of muscular dystrophies are caused by the abnormalities of the dystrophin glycoprotein complex (DGC) that plays crucial roles as a structural unit and scaffolds for signaling molecules at the sarcolemma. α-Dystrobrevin is a component of the DGC and directly associates with dystrophin. α-Dystrobrevin also binds to intermediate filaments as well as syntrophin, a modular adaptor protein thought to be involved in signaling. Although no muscular dystrophy has been associated within mutations of the α-dystrobrevin gene, emerging findings suggest potential significance of α-dystrobrevin in striated muscle. This review addresses the functional role of α-dystrobrevin in muscle as well as its possible implication for muscular dystrophy.

Show MeSH

Related in: MedlinePlus

Schematic illustration of the dystrophin-glycoprotein complex network in muscle. α-Dystrobrevin (α-DB) forms a core part of the DGC with dystrophin, syntrophin, α-dystroglycan (α-DG), β-dystroglycan (β-DG), sarcoglycan complex (SGC), and sarcospan (SPN). Proteins involved in structural integrity and signaling are highlighted in purple and red, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3111625&req=5

f2-ijms-12-01660: Schematic illustration of the dystrophin-glycoprotein complex network in muscle. α-Dystrobrevin (α-DB) forms a core part of the DGC with dystrophin, syntrophin, α-dystroglycan (α-DG), β-dystroglycan (β-DG), sarcoglycan complex (SGC), and sarcospan (SPN). Proteins involved in structural integrity and signaling are highlighted in purple and red, respectively.

Mentions: α-Dystrobrevin is a component of DGC, which is indispensable for the structural integrity of muscle. As mentioned above, it directly associates with dystrophin at its coiled-coil domain and with sarcoglycan complex in its N-terminal half. As is the case with dystrophin, α-dystrobrevin may also function as a structural scaffold linking the DGC to the intracellular cytoskeleton. By using the yeast two-hybrid and co-immunoprecipitation analysis, several groups identified additional α-dystrobrevin-binding proteins: syncoilin, β-synemin, and dysbindin [22–24] (Figure 2). Syncoilin and β-synemin are both intermediate filament (IF) proteins. The IFs play a structural role by forming an important part of the cell cytoskeleton and providing mechanical stability to the cells [25]. In muscle cells, the IFs encircle the Z-lines of each integral myofibril, thereby connecting all adjacent myofibrils and linking the Z-lines of the peripheral layer of cellular myofibrils to the sarcolemma [26].


The role of α-dystrobrevin in striated muscle.

Nakamori M, Takahashi MP - Int J Mol Sci (2011)

Schematic illustration of the dystrophin-glycoprotein complex network in muscle. α-Dystrobrevin (α-DB) forms a core part of the DGC with dystrophin, syntrophin, α-dystroglycan (α-DG), β-dystroglycan (β-DG), sarcoglycan complex (SGC), and sarcospan (SPN). Proteins involved in structural integrity and signaling are highlighted in purple and red, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3111625&req=5

f2-ijms-12-01660: Schematic illustration of the dystrophin-glycoprotein complex network in muscle. α-Dystrobrevin (α-DB) forms a core part of the DGC with dystrophin, syntrophin, α-dystroglycan (α-DG), β-dystroglycan (β-DG), sarcoglycan complex (SGC), and sarcospan (SPN). Proteins involved in structural integrity and signaling are highlighted in purple and red, respectively.
Mentions: α-Dystrobrevin is a component of DGC, which is indispensable for the structural integrity of muscle. As mentioned above, it directly associates with dystrophin at its coiled-coil domain and with sarcoglycan complex in its N-terminal half. As is the case with dystrophin, α-dystrobrevin may also function as a structural scaffold linking the DGC to the intracellular cytoskeleton. By using the yeast two-hybrid and co-immunoprecipitation analysis, several groups identified additional α-dystrobrevin-binding proteins: syncoilin, β-synemin, and dysbindin [22–24] (Figure 2). Syncoilin and β-synemin are both intermediate filament (IF) proteins. The IFs play a structural role by forming an important part of the cell cytoskeleton and providing mechanical stability to the cells [25]. In muscle cells, the IFs encircle the Z-lines of each integral myofibril, thereby connecting all adjacent myofibrils and linking the Z-lines of the peripheral layer of cellular myofibrils to the sarcolemma [26].

Bottom Line: Major forms of muscular dystrophies are caused by the abnormalities of the dystrophin glycoprotein complex (DGC) that plays crucial roles as a structural unit and scaffolds for signaling molecules at the sarcolemma. α-Dystrobrevin is a component of the DGC and directly associates with dystrophin. α-Dystrobrevin also binds to intermediate filaments as well as syntrophin, a modular adaptor protein thought to be involved in signaling.Although no muscular dystrophy has been associated within mutations of the α-dystrobrevin gene, emerging findings suggest potential significance of α-dystrobrevin in striated muscle.This review addresses the functional role of α-dystrobrevin in muscle as well as its possible implication for muscular dystrophy.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, Osaka University Graduate School of Medicine, 2-2, D-4, Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mail: masayuki_nakamori@urmc.rochester.edu.

ABSTRACT
Muscular dystrophies are a group of diseases that primarily affect striated muscle and are characterized by the progressive loss of muscle strength and integrity. Major forms of muscular dystrophies are caused by the abnormalities of the dystrophin glycoprotein complex (DGC) that plays crucial roles as a structural unit and scaffolds for signaling molecules at the sarcolemma. α-Dystrobrevin is a component of the DGC and directly associates with dystrophin. α-Dystrobrevin also binds to intermediate filaments as well as syntrophin, a modular adaptor protein thought to be involved in signaling. Although no muscular dystrophy has been associated within mutations of the α-dystrobrevin gene, emerging findings suggest potential significance of α-dystrobrevin in striated muscle. This review addresses the functional role of α-dystrobrevin in muscle as well as its possible implication for muscular dystrophy.

Show MeSH
Related in: MedlinePlus