Limits...
Interactive graphics: exemplified with real data applications.

Malik WA, Unlü A - Front Psychol (2011)

Bottom Line: Graphics are widely used in modern applied statistics because they are easy to create, convenient to use, and they can present information effectively.Static plots do not allow interacting with graphics.The benefits and strengths of interactive graphics for data exploration and data quality analyses are illustrated systematically with three complex real datasets.

View Article: PubMed Central - PubMed

Affiliation: Department of Mathematics, University of Augsburg Augsburg, Germany.

ABSTRACT
Graphics are widely used in modern applied statistics because they are easy to create, convenient to use, and they can present information effectively. Static plots do not allow interacting with graphics. User interaction, on the other hand, is crucial in exploring data. It gives flexibility and control. One can experiment with the data and the displays. One can investigate the data from different perspectives to produce views that are easily interpretable and informative. In this paper, we try to explain interactive graphics and advocate their use as a practical tool. The benefits and strengths of interactive graphics for data exploration and data quality analyses are illustrated systematically with three complex real datasets.

No MeSH data available.


Scatterplot of arrival time by departure time after converting arrival time into a 48-h scale. The gap in the strip may be due to many airports closed at night.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3111423&req=5

Figure 2: Scatterplot of arrival time by departure time after converting arrival time into a 48-h scale. The gap in the strip may be due to many airports closed at night.

Mentions: In the right-hand scatterplot of Figure 1, it looks like flights in the lower right cluster are those which arrived before they departed. But this is not true; actually these are flights which arrived next day. So a conversion of arrival time into a 48-h span is required. Hence a new arrival time is derived by adding actual elapsed time to departure time. This new derived arrival time is the arrival time of the flight according to the local time zone of the departure airport. This helps somewhat in solving this problem, as shown in Figure 2. In Figure 2, the lower gap in the strip may be due to many airports being closed at night. Analysts should bear in mind that at night there are fewer flights.


Interactive graphics: exemplified with real data applications.

Malik WA, Unlü A - Front Psychol (2011)

Scatterplot of arrival time by departure time after converting arrival time into a 48-h scale. The gap in the strip may be due to many airports closed at night.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3111423&req=5

Figure 2: Scatterplot of arrival time by departure time after converting arrival time into a 48-h scale. The gap in the strip may be due to many airports closed at night.
Mentions: In the right-hand scatterplot of Figure 1, it looks like flights in the lower right cluster are those which arrived before they departed. But this is not true; actually these are flights which arrived next day. So a conversion of arrival time into a 48-h span is required. Hence a new arrival time is derived by adding actual elapsed time to departure time. This new derived arrival time is the arrival time of the flight according to the local time zone of the departure airport. This helps somewhat in solving this problem, as shown in Figure 2. In Figure 2, the lower gap in the strip may be due to many airports being closed at night. Analysts should bear in mind that at night there are fewer flights.

Bottom Line: Graphics are widely used in modern applied statistics because they are easy to create, convenient to use, and they can present information effectively.Static plots do not allow interacting with graphics.The benefits and strengths of interactive graphics for data exploration and data quality analyses are illustrated systematically with three complex real datasets.

View Article: PubMed Central - PubMed

Affiliation: Department of Mathematics, University of Augsburg Augsburg, Germany.

ABSTRACT
Graphics are widely used in modern applied statistics because they are easy to create, convenient to use, and they can present information effectively. Static plots do not allow interacting with graphics. User interaction, on the other hand, is crucial in exploring data. It gives flexibility and control. One can experiment with the data and the displays. One can investigate the data from different perspectives to produce views that are easily interpretable and informative. In this paper, we try to explain interactive graphics and advocate their use as a practical tool. The benefits and strengths of interactive graphics for data exploration and data quality analyses are illustrated systematically with three complex real datasets.

No MeSH data available.