Limits...
HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers.

Soitamo AJ, Jada B, Lehto K - BMC Plant Biol. (2011)

Bottom Line: The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants.The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity.The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Vesilinnantie 5, Turku 20014, Finland. artsoi@utu.fi

ABSTRACT

Background: RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs). These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA) mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter) the helper component-proteinase (HC-Pro) derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent).

Results: Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1) were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S-adenosyl-L-methionine (SAM) were also decreased in these plants, apparently leading to decreased transmethylation capacity. The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity.

Conclusion: Expression of the HC-Pro RSS mimics transcriptional changes previously shown to occur in plants infected with intact viruses (e.g. Tobacco etch virus, TEV). The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins.

Show MeSH

Related in: MedlinePlus

Phenotypes observed in Nicotiana tabacum plants expressing HC-Pro transgene. A typical morphology of flowers is indicated in the upper part of the figure (A-C). A wild type tobacco flower is presented in A, a vector control flower (pBIN61) in B and a transgenic HC-Pro expressing flower in C. Phenotypes of two wild type tobacco plants at the flowering state (on the left) and one vector control plant (pBIN61, in between of these wild type plants) and four transgenic HC-Pro expressing plants are presented in D. One representative of one-month old wild type tobacco plant (E) and one transgenic HC-Pro expressing plant (F) demonstrating differences in growth and leaf morphology. A growing pattern of 10 one-month old wild type tobacco plants (G) and 10 transgenic HC-Pro expressing plants (H) are presented at the bottom of the figure
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3111369&req=5

Figure 1: Phenotypes observed in Nicotiana tabacum plants expressing HC-Pro transgene. A typical morphology of flowers is indicated in the upper part of the figure (A-C). A wild type tobacco flower is presented in A, a vector control flower (pBIN61) in B and a transgenic HC-Pro expressing flower in C. Phenotypes of two wild type tobacco plants at the flowering state (on the left) and one vector control plant (pBIN61, in between of these wild type plants) and four transgenic HC-Pro expressing plants are presented in D. One representative of one-month old wild type tobacco plant (E) and one transgenic HC-Pro expressing plant (F) demonstrating differences in growth and leaf morphology. A growing pattern of 10 one-month old wild type tobacco plants (G) and 10 transgenic HC-Pro expressing plants (H) are presented at the bottom of the figure

Mentions: The transgenic tobacco line expressing the HC-Pro gene of PVY strain N under constitutive expression of CaMV 35S promoter [10] was used in this study. Wild type tobacco (wt) plants and plants containing empty transformation vector (pBIN61) were used as controls for the transgenic line [10]. No phenotypic differences were detected between these two types of control plants (Figure 1A, 1B and 1D).


HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers.

Soitamo AJ, Jada B, Lehto K - BMC Plant Biol. (2011)

Phenotypes observed in Nicotiana tabacum plants expressing HC-Pro transgene. A typical morphology of flowers is indicated in the upper part of the figure (A-C). A wild type tobacco flower is presented in A, a vector control flower (pBIN61) in B and a transgenic HC-Pro expressing flower in C. Phenotypes of two wild type tobacco plants at the flowering state (on the left) and one vector control plant (pBIN61, in between of these wild type plants) and four transgenic HC-Pro expressing plants are presented in D. One representative of one-month old wild type tobacco plant (E) and one transgenic HC-Pro expressing plant (F) demonstrating differences in growth and leaf morphology. A growing pattern of 10 one-month old wild type tobacco plants (G) and 10 transgenic HC-Pro expressing plants (H) are presented at the bottom of the figure
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3111369&req=5

Figure 1: Phenotypes observed in Nicotiana tabacum plants expressing HC-Pro transgene. A typical morphology of flowers is indicated in the upper part of the figure (A-C). A wild type tobacco flower is presented in A, a vector control flower (pBIN61) in B and a transgenic HC-Pro expressing flower in C. Phenotypes of two wild type tobacco plants at the flowering state (on the left) and one vector control plant (pBIN61, in between of these wild type plants) and four transgenic HC-Pro expressing plants are presented in D. One representative of one-month old wild type tobacco plant (E) and one transgenic HC-Pro expressing plant (F) demonstrating differences in growth and leaf morphology. A growing pattern of 10 one-month old wild type tobacco plants (G) and 10 transgenic HC-Pro expressing plants (H) are presented at the bottom of the figure
Mentions: The transgenic tobacco line expressing the HC-Pro gene of PVY strain N under constitutive expression of CaMV 35S promoter [10] was used in this study. Wild type tobacco (wt) plants and plants containing empty transformation vector (pBIN61) were used as controls for the transgenic line [10]. No phenotypic differences were detected between these two types of control plants (Figure 1A, 1B and 1D).

Bottom Line: The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants.The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity.The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Vesilinnantie 5, Turku 20014, Finland. artsoi@utu.fi

ABSTRACT

Background: RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs). These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA) mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter) the helper component-proteinase (HC-Pro) derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent).

Results: Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1) were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S-adenosyl-L-methionine (SAM) were also decreased in these plants, apparently leading to decreased transmethylation capacity. The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity.

Conclusion: Expression of the HC-Pro RSS mimics transcriptional changes previously shown to occur in plants infected with intact viruses (e.g. Tobacco etch virus, TEV). The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins.

Show MeSH
Related in: MedlinePlus