Limits...
Repeated bedside echocardiography in children with respiratory failure.

Kobr J, Fremuth J, Pizingerova K, Sasek L, Jehlicka P, Fikrlova S, Slavik Z - Cardiovasc Ultrasound (2011)

Bottom Line: At time-1 higher average values of RV MPI (0.34, SD 0.01 vs. 0.21, SD 0.01; p < 0.001) were found in all groups compared with reference values.At time-2 RV MPI were lower (0.25, SD 0.02 vs. 0.34, SD 0.01; p < 0.001), but remained higher compared with reference values (0.25, SD 0.02 vs. 0.21, SD 0.01; p < 0.05).Other parameters in high-risk groups were improved, but remained insignificantly different compared with reference values.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Paediatrics, Charles University in Prague, Faculty of Medicine in Pilsen and Faculty Hospital Pilsen, Czech Republic. kobr@fnplzen.cz

ABSTRACT

Background: The aim of this study was to verify the benefits and limitations of repeated bedside echocardiographic examinations in children during mechanical ventilation. For the purposes of this study, we selected the data of over a time period from 2006 to 2010.

Methods: A total of 235 children, average age 3.21 (SD 1.32) years were included into the study and divided into etiopathogenic groups. High-risk groups comprised: Acute lung injury and acute respiratory distress syndrome (ALI/ARDS), return of spontaneous circulation after cardiopulmonary resuscitation (ROSC), bronchopulmonary dysplasia (BPD), cardiomyopathy (CMP) and cardiopulmonary disease (CPD). Transthoracic echocardiography was carried out during mechanical ventilation. The following data were collated for statistical evaluation: right and left ventricle myocardial performance indices (RV MPI; LV MPI), left ventricle shortening fraction (SF), cardiac output (CO), and the mitral valve ratio of peak velocity of early wave (E) to the peak velocity of active wave (A) as E/A ratio. The data was processed after a period of recovery, i.e. one hour after the introduction of invasive lines (time-1) and after 72 hours of comprehensive treatment (time-2). The overall development of parameters over time was compared within groups and between groups using the distribution-free Wilcoxons and two-way ANOVA tests.

Results: A total of 870 echocardiographic examinations were performed. At time-1 higher average values of RV MPI (0.34, SD 0.01 vs. 0.21, SD 0.01; p < 0.001) were found in all groups compared with reference values. Left ventricular load in the high-risk groups was expressed by a higher LV MPI (0.39, SD 0.13 vs. 0.29, SD 0.02; p < 0.01) and lower E/A ratio (0.95, SD 0.36 vs. 1.36, SD 0.64; p < 0.001), SF (0.37, SD 0.11 vs. 0.47, SD 0.02; p < 0.01) and CO (1.95, SD 0.37 vs. 2.94, SD 1.03; p < 0.01). At time-2 RV MPI were lower (0.25, SD 0.02 vs. 0.34, SD 0.01; p < 0.001), but remained higher compared with reference values (0.25, SD 0.02 vs. 0.21, SD 0.01; p < 0.05). Other parameters in high-risk groups were improved, but remained insignificantly different compared with reference values.

Conclusion: Echocardiography complements standard monitoring of valuable information regarding cardiac load in real time. Chest excursion during mechanical ventilation does not reduce the quality of the acquired data.

Show MeSH

Related in: MedlinePlus

Mitral valve inflow, left ventricle filling and outflow.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3111351&req=5

Figure 1: Mitral valve inflow, left ventricle filling and outflow.

Mentions: M-mode and 2D examinations were performed in standard axis modes [9]. The left ventricular internal dimensions and wall thickness were measured in M-mode. The SF, EF and CO were calculated using the ultrasound device. 2D echocardiographic views of standard projections were used for anatomical orientation and to find structural defects. Continuous spectral Doppler flow with dual color Doppler imaging was used to explore for regurgitation, valves or septal defects, and the measurement of peak pressure gradients (PPGs; torr). Data from PPG tricuspid valve regurgitation and systemic pressures were used to manually calculate the mean pressure in the right ventricle. This corresponds to a mean pressure in the pulmonary trunk, unless an obstruction of right ventricular outflow tract or pulmonary regurgitation exists. Pulsed Doppler flow with high resolution was used to measure the velocity of atrioventricular valve inflow and the time interval between valvular closure and opening. The apical four-chamber view enables us to acquire data of blood inflow through the atrioventricular valves, and in a left parasternal view of the semilunar valves inflow. The data obtained were used to calculate E/A ratio and MPIs (Tei-indices). Care was taken to align the transducer beam as closely as possible to the blood flow axis. Doppler signals for the left and right ventricular valves were not acquired simultaneously. No angle correction was made. Doppler and ECG tracings were recorded and stored digitally. The blood flow time intervals were measured by taking the three most distinct Doppler traces in a frozen template. The time interval from the cessation to the onset of mitral or tricuspid inflow (AVCO; ms) was measured. This interval is equal to the sum of isovolumic relaxation time (IRT; ms), isovolumic contraction time (ICT; ms), and ejection time (ET; ms). The actual view of the mitral valve inflow and measurement of time intervals of the left ventricle filling and outflow are shown in Figure 1.


Repeated bedside echocardiography in children with respiratory failure.

Kobr J, Fremuth J, Pizingerova K, Sasek L, Jehlicka P, Fikrlova S, Slavik Z - Cardiovasc Ultrasound (2011)

Mitral valve inflow, left ventricle filling and outflow.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3111351&req=5

Figure 1: Mitral valve inflow, left ventricle filling and outflow.
Mentions: M-mode and 2D examinations were performed in standard axis modes [9]. The left ventricular internal dimensions and wall thickness were measured in M-mode. The SF, EF and CO were calculated using the ultrasound device. 2D echocardiographic views of standard projections were used for anatomical orientation and to find structural defects. Continuous spectral Doppler flow with dual color Doppler imaging was used to explore for regurgitation, valves or septal defects, and the measurement of peak pressure gradients (PPGs; torr). Data from PPG tricuspid valve regurgitation and systemic pressures were used to manually calculate the mean pressure in the right ventricle. This corresponds to a mean pressure in the pulmonary trunk, unless an obstruction of right ventricular outflow tract or pulmonary regurgitation exists. Pulsed Doppler flow with high resolution was used to measure the velocity of atrioventricular valve inflow and the time interval between valvular closure and opening. The apical four-chamber view enables us to acquire data of blood inflow through the atrioventricular valves, and in a left parasternal view of the semilunar valves inflow. The data obtained were used to calculate E/A ratio and MPIs (Tei-indices). Care was taken to align the transducer beam as closely as possible to the blood flow axis. Doppler signals for the left and right ventricular valves were not acquired simultaneously. No angle correction was made. Doppler and ECG tracings were recorded and stored digitally. The blood flow time intervals were measured by taking the three most distinct Doppler traces in a frozen template. The time interval from the cessation to the onset of mitral or tricuspid inflow (AVCO; ms) was measured. This interval is equal to the sum of isovolumic relaxation time (IRT; ms), isovolumic contraction time (ICT; ms), and ejection time (ET; ms). The actual view of the mitral valve inflow and measurement of time intervals of the left ventricle filling and outflow are shown in Figure 1.

Bottom Line: At time-1 higher average values of RV MPI (0.34, SD 0.01 vs. 0.21, SD 0.01; p < 0.001) were found in all groups compared with reference values.At time-2 RV MPI were lower (0.25, SD 0.02 vs. 0.34, SD 0.01; p < 0.001), but remained higher compared with reference values (0.25, SD 0.02 vs. 0.21, SD 0.01; p < 0.05).Other parameters in high-risk groups were improved, but remained insignificantly different compared with reference values.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Paediatrics, Charles University in Prague, Faculty of Medicine in Pilsen and Faculty Hospital Pilsen, Czech Republic. kobr@fnplzen.cz

ABSTRACT

Background: The aim of this study was to verify the benefits and limitations of repeated bedside echocardiographic examinations in children during mechanical ventilation. For the purposes of this study, we selected the data of over a time period from 2006 to 2010.

Methods: A total of 235 children, average age 3.21 (SD 1.32) years were included into the study and divided into etiopathogenic groups. High-risk groups comprised: Acute lung injury and acute respiratory distress syndrome (ALI/ARDS), return of spontaneous circulation after cardiopulmonary resuscitation (ROSC), bronchopulmonary dysplasia (BPD), cardiomyopathy (CMP) and cardiopulmonary disease (CPD). Transthoracic echocardiography was carried out during mechanical ventilation. The following data were collated for statistical evaluation: right and left ventricle myocardial performance indices (RV MPI; LV MPI), left ventricle shortening fraction (SF), cardiac output (CO), and the mitral valve ratio of peak velocity of early wave (E) to the peak velocity of active wave (A) as E/A ratio. The data was processed after a period of recovery, i.e. one hour after the introduction of invasive lines (time-1) and after 72 hours of comprehensive treatment (time-2). The overall development of parameters over time was compared within groups and between groups using the distribution-free Wilcoxons and two-way ANOVA tests.

Results: A total of 870 echocardiographic examinations were performed. At time-1 higher average values of RV MPI (0.34, SD 0.01 vs. 0.21, SD 0.01; p < 0.001) were found in all groups compared with reference values. Left ventricular load in the high-risk groups was expressed by a higher LV MPI (0.39, SD 0.13 vs. 0.29, SD 0.02; p < 0.01) and lower E/A ratio (0.95, SD 0.36 vs. 1.36, SD 0.64; p < 0.001), SF (0.37, SD 0.11 vs. 0.47, SD 0.02; p < 0.01) and CO (1.95, SD 0.37 vs. 2.94, SD 1.03; p < 0.01). At time-2 RV MPI were lower (0.25, SD 0.02 vs. 0.34, SD 0.01; p < 0.001), but remained higher compared with reference values (0.25, SD 0.02 vs. 0.21, SD 0.01; p < 0.05). Other parameters in high-risk groups were improved, but remained insignificantly different compared with reference values.

Conclusion: Echocardiography complements standard monitoring of valuable information regarding cardiac load in real time. Chest excursion during mechanical ventilation does not reduce the quality of the acquired data.

Show MeSH
Related in: MedlinePlus