Limits...
Rapid screening for chromosomal aneuploidies using array-MLPA.

Yan JB, Xu M, Xiong C, Zhou DW, Ren ZR, Huang Y, Mommersteeg M, van Beuningen R, Wang YT, Liao SX, Zeng F, Wu Y, Zeng YT - BMC Med. Genet. (2011)

Bottom Line: However, results are usually not available for 3-4 days or more.Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping.Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Medical Genetics, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, P.R. China.

ABSTRACT

Background: Chromosome abnormalities, especially trisomy of chromosome 21, 13, or 18 as well as sex chromosome aneuploidy, are a well-established cause of pregnancy loss. Cultured cell karyotype analysis and FISH have been considered reliable detectors of fetal abnormality. However, results are usually not available for 3-4 days or more. Multiplex ligation-dependent probe amplification (MLPA) has emerged as an alternative rapid technique for detection of chromosome aneuploidies. However, conventional MLPA does not allow for relative quantification of more than 50 different target sequences in one reaction and does not detect mosaic trisomy. A multiplexed MLPA with more sensitive detection would be useful for fetal genetic screening.

Methods: We developed a method of array-based MLPA to rapidly screen for common aneuploidies. We designed 116 universal tag-probes covering chromosomes 13, 18, 21, X, and Y, and 8 control autosomal genes. We performed MLPA and hybridized the products on a 4-well flow-through microarray system. We determined chromosome copy numbers by analyzing the relative signals of the chromosome-specific probes.

Results: In a blind study of 161 peripheral blood and 12 amniotic fluid samples previously karyotyped, 169 of 173 (97.7%) including all the amniotic fluid samples were correctly identified by array-MLPA. Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping. Additionally, we identified five Y chromosome abnormalities in which G-banding could not distinguish their origins for four of the five cases.

Conclusions: Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening. Furthermore, we have developed a simple and rapid procedure for screening copy numbers on chromosomes 13, 18, 21, X, and Y using array-MLPA.

Show MeSH

Related in: MedlinePlus

Array-MLPA analysis of chromosome X monosomy patients with unknown marker chromosomes. (A) Strong hybridization signals for TSPY were detected in sample B6. (B) Positive signals for RBMY and TSPY were found in sample B7. (C) PCR analysis of RBMY, SRY and TSPY detects the unknown marker chromosome detected with G-banding analysis. (D) The unknown marker chromosome in the sample B6 was derived from chromosome Y.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3111339&req=5

Figure 5: Array-MLPA analysis of chromosome X monosomy patients with unknown marker chromosomes. (A) Strong hybridization signals for TSPY were detected in sample B6. (B) Positive signals for RBMY and TSPY were found in sample B7. (C) PCR analysis of RBMY, SRY and TSPY detects the unknown marker chromosome detected with G-banding analysis. (D) The unknown marker chromosome in the sample B6 was derived from chromosome Y.

Mentions: Additionally, five cases (B5-B9) with exceptive sex chromosome aneuploidies were identified using the criterion that at least four of ten Y chromosome-specific probes detected an abnormality. The probe signals in the TSPY gene were identified in all of the five cases (B5-B9). While the signals in the RBMY gene were detected in three samples (B7-B9). Subsequently, the G-banding analysis revealed that they were chromosome X monosomy mosaics with chromosome Y or unknown marker chromosome (mar) (Table 2). Their karyotypes were 45,X/45,X, mar for samples B5-B6, 45,X/46,XY for the sample B7 and 45,X/46,XY(Yq-) for samples B8-B9, respectively. PCR analysis of the RBMY, SRY and TSPY genes confirmed that the unknown marker chromosome found in samples B5 and B6 was indeed a part of chromosome Y (Figure 5).


Rapid screening for chromosomal aneuploidies using array-MLPA.

Yan JB, Xu M, Xiong C, Zhou DW, Ren ZR, Huang Y, Mommersteeg M, van Beuningen R, Wang YT, Liao SX, Zeng F, Wu Y, Zeng YT - BMC Med. Genet. (2011)

Array-MLPA analysis of chromosome X monosomy patients with unknown marker chromosomes. (A) Strong hybridization signals for TSPY were detected in sample B6. (B) Positive signals for RBMY and TSPY were found in sample B7. (C) PCR analysis of RBMY, SRY and TSPY detects the unknown marker chromosome detected with G-banding analysis. (D) The unknown marker chromosome in the sample B6 was derived from chromosome Y.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3111339&req=5

Figure 5: Array-MLPA analysis of chromosome X monosomy patients with unknown marker chromosomes. (A) Strong hybridization signals for TSPY were detected in sample B6. (B) Positive signals for RBMY and TSPY were found in sample B7. (C) PCR analysis of RBMY, SRY and TSPY detects the unknown marker chromosome detected with G-banding analysis. (D) The unknown marker chromosome in the sample B6 was derived from chromosome Y.
Mentions: Additionally, five cases (B5-B9) with exceptive sex chromosome aneuploidies were identified using the criterion that at least four of ten Y chromosome-specific probes detected an abnormality. The probe signals in the TSPY gene were identified in all of the five cases (B5-B9). While the signals in the RBMY gene were detected in three samples (B7-B9). Subsequently, the G-banding analysis revealed that they were chromosome X monosomy mosaics with chromosome Y or unknown marker chromosome (mar) (Table 2). Their karyotypes were 45,X/45,X, mar for samples B5-B6, 45,X/46,XY for the sample B7 and 45,X/46,XY(Yq-) for samples B8-B9, respectively. PCR analysis of the RBMY, SRY and TSPY genes confirmed that the unknown marker chromosome found in samples B5 and B6 was indeed a part of chromosome Y (Figure 5).

Bottom Line: However, results are usually not available for 3-4 days or more.Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping.Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Medical Genetics, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, P.R. China.

ABSTRACT

Background: Chromosome abnormalities, especially trisomy of chromosome 21, 13, or 18 as well as sex chromosome aneuploidy, are a well-established cause of pregnancy loss. Cultured cell karyotype analysis and FISH have been considered reliable detectors of fetal abnormality. However, results are usually not available for 3-4 days or more. Multiplex ligation-dependent probe amplification (MLPA) has emerged as an alternative rapid technique for detection of chromosome aneuploidies. However, conventional MLPA does not allow for relative quantification of more than 50 different target sequences in one reaction and does not detect mosaic trisomy. A multiplexed MLPA with more sensitive detection would be useful for fetal genetic screening.

Methods: We developed a method of array-based MLPA to rapidly screen for common aneuploidies. We designed 116 universal tag-probes covering chromosomes 13, 18, 21, X, and Y, and 8 control autosomal genes. We performed MLPA and hybridized the products on a 4-well flow-through microarray system. We determined chromosome copy numbers by analyzing the relative signals of the chromosome-specific probes.

Results: In a blind study of 161 peripheral blood and 12 amniotic fluid samples previously karyotyped, 169 of 173 (97.7%) including all the amniotic fluid samples were correctly identified by array-MLPA. Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping. Additionally, we identified five Y chromosome abnormalities in which G-banding could not distinguish their origins for four of the five cases.

Conclusions: Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening. Furthermore, we have developed a simple and rapid procedure for screening copy numbers on chromosomes 13, 18, 21, X, and Y using array-MLPA.

Show MeSH
Related in: MedlinePlus