Limits...
Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls.

Misawa N - Mar Drugs (2011)

Bottom Line: In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2')-hydroxylase (CrtG).This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes.Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2')-hydroxylated carotenoids).

View Article: PubMed Central - PubMed

Affiliation: Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-machi, Ishikawa 921-8836, Japan. n-misawa@ishikawa-pu.ac.jp

ABSTRACT
Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C₄₀-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4')-ketolase (4(4')-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3')-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2')-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2')-hydroxylated carotenoids).

Show MeSH

Related in: MedlinePlus

Chemical structures of ketocarotenoids produced in marine bacteria, Paracoccus sp. and Brevundimonas sp., and feasible functions of the carotenoid biosynthesis enzymes. These bacteria synthesize dicyclic carotenoids. Paracoccus sp. and Brevundimonas sp. are demonstrated to possess the unique genes crtX and crtG, respectively, in addition to the common genes, crtE, crtB, crtI, crtY, crtZ, and crtW [10,11].
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3111180&req=5

f1-marinedrugs-09-00757: Chemical structures of ketocarotenoids produced in marine bacteria, Paracoccus sp. and Brevundimonas sp., and feasible functions of the carotenoid biosynthesis enzymes. These bacteria synthesize dicyclic carotenoids. Paracoccus sp. and Brevundimonas sp. are demonstrated to possess the unique genes crtX and crtG, respectively, in addition to the common genes, crtE, crtB, crtI, crtY, crtZ, and crtW [10,11].

Mentions: Many bacteria that have been isolated from marine environments can synthesize a variety of carotenoid pigments [1]. For example, acyclic C30-type carotenoic acids were identified in some marine bacteria such as Planococcus maritimus [2] and Rubritalea squalenifaciens [3]. Algoriphagus sp. KK10202C of the Flexibacteraceae family, which was isolated from a marine sponge, was found to produce flexixanthin ((3S)-3,1′-dihydroxy-3′,4′-didehydro-1′2′-dihydro-β,ψ-caroten-4-one) and deoxyflexixanthin (1′-hydroxy-3′,4′-didehydro-1′2′-dihydro-β,ψ-caroten-4-one) [4], which are C40-type monocyclic carotenoids containing one β-end group (β ring) (called monocyclic carotenoids in this review). Other marine bacteria including strain P99-3, which belong to the Flavobacteriaceae family, were shown to produce monocyclic carotenoids, myxol ((3R,2′S)-3′,4′-didehydro-1′,2′-dihydro-β,ψ-carotene-3,1′,2′-triol) and saproxanthin ((3R)-3′,4′-didehydro-1′,2′-dihydro-β,ψ-carotene-3,1′-diol), and zeaxanthin ((3R,3′R)-β,β-carotene-3,3′-diol) [5,6], which are a C40-type dicyclic carotenoid containing two β-end groups (called dicyclic carotenids in this review). Marine bacteria belonging to genus Paracoccus, Brevundimonas or Erythrobacter in the α-Proteobacteria class have been revealed to synthesize dicyclic carotenoids that are ketolated at the 4(4′)-position(s) (called ketocarotenoids), e.g., astaxanthin ((3S,3′S)-3,3′-dihydroxy-β,β-carotene-4,4′-dione) and adonixanthin ((3S,3′R)-3,3′-dyhydroxy-β,β-caroten-4-one) (Figure 1) [7–9].


Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls.

Misawa N - Mar Drugs (2011)

Chemical structures of ketocarotenoids produced in marine bacteria, Paracoccus sp. and Brevundimonas sp., and feasible functions of the carotenoid biosynthesis enzymes. These bacteria synthesize dicyclic carotenoids. Paracoccus sp. and Brevundimonas sp. are demonstrated to possess the unique genes crtX and crtG, respectively, in addition to the common genes, crtE, crtB, crtI, crtY, crtZ, and crtW [10,11].
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3111180&req=5

f1-marinedrugs-09-00757: Chemical structures of ketocarotenoids produced in marine bacteria, Paracoccus sp. and Brevundimonas sp., and feasible functions of the carotenoid biosynthesis enzymes. These bacteria synthesize dicyclic carotenoids. Paracoccus sp. and Brevundimonas sp. are demonstrated to possess the unique genes crtX and crtG, respectively, in addition to the common genes, crtE, crtB, crtI, crtY, crtZ, and crtW [10,11].
Mentions: Many bacteria that have been isolated from marine environments can synthesize a variety of carotenoid pigments [1]. For example, acyclic C30-type carotenoic acids were identified in some marine bacteria such as Planococcus maritimus [2] and Rubritalea squalenifaciens [3]. Algoriphagus sp. KK10202C of the Flexibacteraceae family, which was isolated from a marine sponge, was found to produce flexixanthin ((3S)-3,1′-dihydroxy-3′,4′-didehydro-1′2′-dihydro-β,ψ-caroten-4-one) and deoxyflexixanthin (1′-hydroxy-3′,4′-didehydro-1′2′-dihydro-β,ψ-caroten-4-one) [4], which are C40-type monocyclic carotenoids containing one β-end group (β ring) (called monocyclic carotenoids in this review). Other marine bacteria including strain P99-3, which belong to the Flavobacteriaceae family, were shown to produce monocyclic carotenoids, myxol ((3R,2′S)-3′,4′-didehydro-1′,2′-dihydro-β,ψ-carotene-3,1′,2′-triol) and saproxanthin ((3R)-3′,4′-didehydro-1′,2′-dihydro-β,ψ-carotene-3,1′-diol), and zeaxanthin ((3R,3′R)-β,β-carotene-3,3′-diol) [5,6], which are a C40-type dicyclic carotenoid containing two β-end groups (called dicyclic carotenids in this review). Marine bacteria belonging to genus Paracoccus, Brevundimonas or Erythrobacter in the α-Proteobacteria class have been revealed to synthesize dicyclic carotenoids that are ketolated at the 4(4′)-position(s) (called ketocarotenoids), e.g., astaxanthin ((3S,3′S)-3,3′-dihydroxy-β,β-carotene-4,4′-dione) and adonixanthin ((3S,3′R)-3,3′-dyhydroxy-β,β-caroten-4-one) (Figure 1) [7–9].

Bottom Line: In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2')-hydroxylase (CrtG).This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes.Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2')-hydroxylated carotenoids).

View Article: PubMed Central - PubMed

Affiliation: Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-machi, Ishikawa 921-8836, Japan. n-misawa@ishikawa-pu.ac.jp

ABSTRACT
Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C₄₀-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4')-ketolase (4(4')-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3')-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2')-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2')-hydroxylated carotenoids).

Show MeSH
Related in: MedlinePlus