Limits...
Clinical outcome of shoulder muscle transfer for shoulder deformities in obstetric brachial plexus palsy: A study of 150 cases.

Thatte MR, Agashe MV, Rao A, Rathod CM, Mehta R - Indian J Plast Surg (2011)

Bottom Line: The mean aggregate modified Mallet score was 19.2 ± 1.66.This procedure can thus be seen as a very effective tool to treat internal rotation and adduction contractures, achieve functional active abduction and external rotation, as well as possibly prevent glenohumeral dysplasia, though the long-term effects of this procedure may still have to be studied in detail clinico-radiologically to confirm this hypothesis.Therapeutic level IV.

View Article: PubMed Central - PubMed

Affiliation: Department of Reconstructive and Plastic Surgery, Bai Jerbai Hospital for Children, Mumbai, India.

ABSTRACT

Background: Residual muscle weakness, cross-innervation (caused by misdirected regenerating axons), and muscular imbalance are the main causes of internal rotation contractures leading to limitation of shoulder joint movement, glenoid dysplasia, and deformity in obstetric brachial plexus palsy. Muscle transfers and release of antagonistic muscles improve range of motion as well as halt or reverse the deterioration in the bony architecture of the shoulder joint. The aim of our study was to evaluate the clinical outcome of shoulder muscle transfer for shoulder abnormalities in obstetric brachial plexus palsy.

Materials and methods: One hundred and fifty patients of obstetric brachial plexus palsy with shoulder deformity underwent shoulder muscle transfer along with anterior shoulder release at our institutions from 1999 to 2007. Shoulder function was assessed both preoperatively and postoperatively using aggregate modified Mallet score and active and passive range of motion. The mean duration of follow-up was 4 years (2.5-8 years).

Results: The mean preoperative abduction was 45° ± 7.12, mean passive external rotation was 10° ± 6.79, the mean active external rotation was 0°, and the mean aggregate modified Mallet score was 11.2 ± 1.41. At a mean follow-up of 4 years (2.5-8 years), the mean active abduction was 120° ± 18.01, the mean passive external rotation was 80° ± 10.26, while the mean active external rotation was 45° ± 3.84. The mean aggregate modified Mallet score was 19.2 ± 1.66.

Conclusions: This procedure can thus be seen as a very effective tool to treat internal rotation and adduction contractures, achieve functional active abduction and external rotation, as well as possibly prevent glenohumeral dysplasia, though the long-term effects of this procedure may still have to be studied in detail clinico-radiologically to confirm this hypothesis.

Level of evidence: Therapeutic level IV.

No MeSH data available.


Related in: MedlinePlus

(a) Preoperative clinical photograph of a 14-month-old child with untreated right-sided obstetric brachial plexus palsy (C5-6 lesion) showing inability to abduct the right shoulder with a concomitant internal rotation contracture, (b) Three years post-operative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (c) Three years postoperative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (d) Three years post-operative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (e) Three years postoperative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3111117&req=5

Figure 2: (a) Preoperative clinical photograph of a 14-month-old child with untreated right-sided obstetric brachial plexus palsy (C5-6 lesion) showing inability to abduct the right shoulder with a concomitant internal rotation contracture, (b) Three years post-operative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (c) Three years postoperative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (d) Three years post-operative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (e) Three years postoperative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities.

Mentions: All patients showed improvement in shoulder joint function and movement after the surgical procedure as measured by the aggregate modified Mallet score after a mean follow-up of 4 years (range 2.5–8 years) [Figures 1a–e and Figures 2a–e]. The pre-operative Mallet score ranged from 8 to 13 with a mean of 11.2 ± 1.41. This score improved to a mean aggregate Mallet score of 19.2 ± 1.66 (range 15–20). No patient had worsening of shoulder function. All factors of the Mallet score (global abduction, global external rotation, hand-to-mouth, hand-to-spine, and hand-to-neck) improved with the maximum improvement being seen in the global abduction and global external rotation (pre-operative mean of 2.0 to a post-operative mean of 4.1 for abduction and pre-operative mean of 2.0 to a post-operative mean of 4.0 for external rotation). The active abduction improved from a pre-operative value of 45° ± 7.12 to a post-operative value of 120° ± 18.01, while the passive external rotation improved from 10° ± 6.79 pre-operatively to 80° ± 10.26 post-operatively . The active external rotation also showed a similar increase from a pre-operative value of 0° to 45° ± 7.12 post-operatively. The details of the pre-operative and post-operative range-of-motion and Mallet scores are provided in Table 2. A total of 10 patients had botulinum toxin A injected into their subscapularis and sternal head of pectoralis major. The post-operative Mallet scores of these 10 patients was marginally better than the other patients (19.5 ± 0.52) (P>0.05). However this is not statistically significant at this time.


Clinical outcome of shoulder muscle transfer for shoulder deformities in obstetric brachial plexus palsy: A study of 150 cases.

Thatte MR, Agashe MV, Rao A, Rathod CM, Mehta R - Indian J Plast Surg (2011)

(a) Preoperative clinical photograph of a 14-month-old child with untreated right-sided obstetric brachial plexus palsy (C5-6 lesion) showing inability to abduct the right shoulder with a concomitant internal rotation contracture, (b) Three years post-operative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (c) Three years postoperative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (d) Three years post-operative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (e) Three years postoperative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3111117&req=5

Figure 2: (a) Preoperative clinical photograph of a 14-month-old child with untreated right-sided obstetric brachial plexus palsy (C5-6 lesion) showing inability to abduct the right shoulder with a concomitant internal rotation contracture, (b) Three years post-operative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (c) Three years postoperative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (d) Three years post-operative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities, (e) Three years postoperative clinical photograph of the same patient depicting excellent clinical function showing abduction (2b), external rotation (2c), hand-to-head (2d), and hand-to-mouth (2e) activities.
Mentions: All patients showed improvement in shoulder joint function and movement after the surgical procedure as measured by the aggregate modified Mallet score after a mean follow-up of 4 years (range 2.5–8 years) [Figures 1a–e and Figures 2a–e]. The pre-operative Mallet score ranged from 8 to 13 with a mean of 11.2 ± 1.41. This score improved to a mean aggregate Mallet score of 19.2 ± 1.66 (range 15–20). No patient had worsening of shoulder function. All factors of the Mallet score (global abduction, global external rotation, hand-to-mouth, hand-to-spine, and hand-to-neck) improved with the maximum improvement being seen in the global abduction and global external rotation (pre-operative mean of 2.0 to a post-operative mean of 4.1 for abduction and pre-operative mean of 2.0 to a post-operative mean of 4.0 for external rotation). The active abduction improved from a pre-operative value of 45° ± 7.12 to a post-operative value of 120° ± 18.01, while the passive external rotation improved from 10° ± 6.79 pre-operatively to 80° ± 10.26 post-operatively . The active external rotation also showed a similar increase from a pre-operative value of 0° to 45° ± 7.12 post-operatively. The details of the pre-operative and post-operative range-of-motion and Mallet scores are provided in Table 2. A total of 10 patients had botulinum toxin A injected into their subscapularis and sternal head of pectoralis major. The post-operative Mallet scores of these 10 patients was marginally better than the other patients (19.5 ± 0.52) (P>0.05). However this is not statistically significant at this time.

Bottom Line: The mean aggregate modified Mallet score was 19.2 ± 1.66.This procedure can thus be seen as a very effective tool to treat internal rotation and adduction contractures, achieve functional active abduction and external rotation, as well as possibly prevent glenohumeral dysplasia, though the long-term effects of this procedure may still have to be studied in detail clinico-radiologically to confirm this hypothesis.Therapeutic level IV.

View Article: PubMed Central - PubMed

Affiliation: Department of Reconstructive and Plastic Surgery, Bai Jerbai Hospital for Children, Mumbai, India.

ABSTRACT

Background: Residual muscle weakness, cross-innervation (caused by misdirected regenerating axons), and muscular imbalance are the main causes of internal rotation contractures leading to limitation of shoulder joint movement, glenoid dysplasia, and deformity in obstetric brachial plexus palsy. Muscle transfers and release of antagonistic muscles improve range of motion as well as halt or reverse the deterioration in the bony architecture of the shoulder joint. The aim of our study was to evaluate the clinical outcome of shoulder muscle transfer for shoulder abnormalities in obstetric brachial plexus palsy.

Materials and methods: One hundred and fifty patients of obstetric brachial plexus palsy with shoulder deformity underwent shoulder muscle transfer along with anterior shoulder release at our institutions from 1999 to 2007. Shoulder function was assessed both preoperatively and postoperatively using aggregate modified Mallet score and active and passive range of motion. The mean duration of follow-up was 4 years (2.5-8 years).

Results: The mean preoperative abduction was 45° ± 7.12, mean passive external rotation was 10° ± 6.79, the mean active external rotation was 0°, and the mean aggregate modified Mallet score was 11.2 ± 1.41. At a mean follow-up of 4 years (2.5-8 years), the mean active abduction was 120° ± 18.01, the mean passive external rotation was 80° ± 10.26, while the mean active external rotation was 45° ± 3.84. The mean aggregate modified Mallet score was 19.2 ± 1.66.

Conclusions: This procedure can thus be seen as a very effective tool to treat internal rotation and adduction contractures, achieve functional active abduction and external rotation, as well as possibly prevent glenohumeral dysplasia, though the long-term effects of this procedure may still have to be studied in detail clinico-radiologically to confirm this hypothesis.

Level of evidence: Therapeutic level IV.

No MeSH data available.


Related in: MedlinePlus