Limits...
Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism.

Wills S, Rossi CC, Bennett J, Martinez Cerdeño V, Ashwood P, Amaral DG, Van de Water J - Mol Autism (2011)

Bottom Line: Autoantibody-positive cells rarely expressed calretinin.Some cell populations stained in the primate (such as the Golgi neurons in the cerebellum) were not as robustly immunoreactive in the mouse brain.Further, these findings confirm the autoantibody-targeted cells to be a subpopulation of GABAergic interneurons.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510 GBSF, Davis, CA 95616, USA. javandewater@ucdavis.edu.

ABSTRACT

Background: Autism is a neurodevelopmental disorder characterized by impairments in social interaction and deficits in verbal and nonverbal communication, together with the presence of repetitive behaviors or a limited repertoire of activities and interests. The causes of autism are currently unclear. In a previous study, we determined that 21% of children with autism have plasma autoantibodies that are immunoreactive with a population of neurons in the cerebellum that appear to be Golgi cells, which are GABAergic interneurons.

Methods: We have extended this analysis by examining plasma immunoreactivity in the remainder of the brain. To determine cell specificity, double-labeling studies that included one of the calcium-binding proteins that are commonly colocalized in GABAergic neurons (calbindin, parvalbumin or calretinin) were also carried out to determine which GABAergic neurons are immunoreactive. Coronal sections through the rostrocaudal extent of the macaque monkey brain were reacted with plasma from each of seven individuals with autism who had previously demonstrated positive Golgi cell staining, as well as six negative controls. In addition, brain sections from adult male mice were similarly examined.

Results: In each case, specific staining was observed for neurons that had the morphological appearance of interneurons. By double-labeling sections with plasma and with antibodies directed against γ-aminobutyric acid (GABA), we determined that all autoantibody-positive neurons were GABAergic. However, not all GABAergic neurons were autoantibody-positive. Calbindin was colabeled in several of the autoantibody-labeled cells, while parvalbumin colabeling was less frequently observed. Autoantibody-positive cells rarely expressed calretinin. Sections from the mouse brain processed similarly to the primate sections also demonstrated immunoreactivity to interneurons distributed throughout the neocortex and many subcortical regions. Some cell populations stained in the primate (such as the Golgi neurons in the cerebellum) were not as robustly immunoreactive in the mouse brain.

Conclusions: These results suggest that the earlier report of autoantibody immunoreactivity to specific cells in the cerebellum extend to other regions of the brain. Further, these findings confirm the autoantibody-targeted cells to be a subpopulation of GABAergic interneurons. The potential impact of these autoantibodies on GABAergic disruption with respect to the etiology of autism is discussed herein.

No MeSH data available.


Related in: MedlinePlus

Photomicrographs illustrating coronal sections through primary visual cortex (V1) of the macaque monkey brain. (A) Nissl-stained section showing the lamination pattern (cortical layers I to VI) of neurons in this region. (B) Staining of V1 with plasma from one child with autism (age 6 years). Note that in this panel and Figure 2E, the highest numbers of labeled neurons are located in the superficial layers (I to III). (C) Section through area V1 demonstrating in situ hybridization with a probe to glutamic acid decarboxylase 67 (GAD67). The brown reaction product illustrates neurons that are GABAergic. (D) Very similar representation of GABAergic neurons identified immunohistochemically with a monoclonal antibody to γ-aminobutyric acid (GABA). (E) Staining very similar to that shown in Figure 2B of plasma from another child with autism (age 5 years). (F) Section through area V1 that was reacted with plasma from a typically developing child (age 5 years). While there is light, nonspecific background staining that resembles the distribution of Nissl-stained cell bodies, there is no specific labeling of GABAergic neurons. Calibration bar, 100 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3108923&req=5

Figure 2: Photomicrographs illustrating coronal sections through primary visual cortex (V1) of the macaque monkey brain. (A) Nissl-stained section showing the lamination pattern (cortical layers I to VI) of neurons in this region. (B) Staining of V1 with plasma from one child with autism (age 6 years). Note that in this panel and Figure 2E, the highest numbers of labeled neurons are located in the superficial layers (I to III). (C) Section through area V1 demonstrating in situ hybridization with a probe to glutamic acid decarboxylase 67 (GAD67). The brown reaction product illustrates neurons that are GABAergic. (D) Very similar representation of GABAergic neurons identified immunohistochemically with a monoclonal antibody to γ-aminobutyric acid (GABA). (E) Staining very similar to that shown in Figure 2B of plasma from another child with autism (age 5 years). (F) Section through area V1 that was reacted with plasma from a typically developing child (age 5 years). While there is light, nonspecific background staining that resembles the distribution of Nissl-stained cell bodies, there is no specific labeling of GABAergic neurons. Calibration bar, 100 μm.

Mentions: We next focused our analysis of the cerebral cortex on area V1 of the occipital lobe (Figure 2). This cortical region was selected because of the nature of its well-characterized cellular neuroanatomy. The pattern of immunoreactive staining was consistent across all plasma samples (Figures 2B and 2E). While there was some heterogeneity in the morphology of labeled neurons, the vast majority of cells appeared to be small, circular cells with several radiating dendrites. Similar patterns were detected between the autoantibody-labeled cells and cells labeled by in situ hybridization with a probe to GAD67 (Figure 2C) or cells labeled immunohistochemically with an antibody to GABA (Figure 2D). The labeled cells had very similar morphology in all three preparations. The distribution of labeled cells was somewhat different, however. With the plasma autoantibodies, there was a clear preponderance of labeled neurons in the superficial layers (I to III), whereas fewer labeled cells were observed in the deep layers (IV to VI). For the GAD67 and GABA preparations, however, the distribution of labeled cells was more homogeneous across all of the cortical layers. In particular, it appeared that there were relatively few autoantibody-reactive cells in layer V in comparison to the GAD67- and GABA-labeled cells. This raised the prospect that the vast majority of neurons recognized by the autoantibodies from individuals with autism were GABAergic interneurons. However, it also appeared likely that these antibodies were not staining a population of GABAergic neurons located in the deep cortical layers.


Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism.

Wills S, Rossi CC, Bennett J, Martinez Cerdeño V, Ashwood P, Amaral DG, Van de Water J - Mol Autism (2011)

Photomicrographs illustrating coronal sections through primary visual cortex (V1) of the macaque monkey brain. (A) Nissl-stained section showing the lamination pattern (cortical layers I to VI) of neurons in this region. (B) Staining of V1 with plasma from one child with autism (age 6 years). Note that in this panel and Figure 2E, the highest numbers of labeled neurons are located in the superficial layers (I to III). (C) Section through area V1 demonstrating in situ hybridization with a probe to glutamic acid decarboxylase 67 (GAD67). The brown reaction product illustrates neurons that are GABAergic. (D) Very similar representation of GABAergic neurons identified immunohistochemically with a monoclonal antibody to γ-aminobutyric acid (GABA). (E) Staining very similar to that shown in Figure 2B of plasma from another child with autism (age 5 years). (F) Section through area V1 that was reacted with plasma from a typically developing child (age 5 years). While there is light, nonspecific background staining that resembles the distribution of Nissl-stained cell bodies, there is no specific labeling of GABAergic neurons. Calibration bar, 100 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3108923&req=5

Figure 2: Photomicrographs illustrating coronal sections through primary visual cortex (V1) of the macaque monkey brain. (A) Nissl-stained section showing the lamination pattern (cortical layers I to VI) of neurons in this region. (B) Staining of V1 with plasma from one child with autism (age 6 years). Note that in this panel and Figure 2E, the highest numbers of labeled neurons are located in the superficial layers (I to III). (C) Section through area V1 demonstrating in situ hybridization with a probe to glutamic acid decarboxylase 67 (GAD67). The brown reaction product illustrates neurons that are GABAergic. (D) Very similar representation of GABAergic neurons identified immunohistochemically with a monoclonal antibody to γ-aminobutyric acid (GABA). (E) Staining very similar to that shown in Figure 2B of plasma from another child with autism (age 5 years). (F) Section through area V1 that was reacted with plasma from a typically developing child (age 5 years). While there is light, nonspecific background staining that resembles the distribution of Nissl-stained cell bodies, there is no specific labeling of GABAergic neurons. Calibration bar, 100 μm.
Mentions: We next focused our analysis of the cerebral cortex on area V1 of the occipital lobe (Figure 2). This cortical region was selected because of the nature of its well-characterized cellular neuroanatomy. The pattern of immunoreactive staining was consistent across all plasma samples (Figures 2B and 2E). While there was some heterogeneity in the morphology of labeled neurons, the vast majority of cells appeared to be small, circular cells with several radiating dendrites. Similar patterns were detected between the autoantibody-labeled cells and cells labeled by in situ hybridization with a probe to GAD67 (Figure 2C) or cells labeled immunohistochemically with an antibody to GABA (Figure 2D). The labeled cells had very similar morphology in all three preparations. The distribution of labeled cells was somewhat different, however. With the plasma autoantibodies, there was a clear preponderance of labeled neurons in the superficial layers (I to III), whereas fewer labeled cells were observed in the deep layers (IV to VI). For the GAD67 and GABA preparations, however, the distribution of labeled cells was more homogeneous across all of the cortical layers. In particular, it appeared that there were relatively few autoantibody-reactive cells in layer V in comparison to the GAD67- and GABA-labeled cells. This raised the prospect that the vast majority of neurons recognized by the autoantibodies from individuals with autism were GABAergic interneurons. However, it also appeared likely that these antibodies were not staining a population of GABAergic neurons located in the deep cortical layers.

Bottom Line: Autoantibody-positive cells rarely expressed calretinin.Some cell populations stained in the primate (such as the Golgi neurons in the cerebellum) were not as robustly immunoreactive in the mouse brain.Further, these findings confirm the autoantibody-targeted cells to be a subpopulation of GABAergic interneurons.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510 GBSF, Davis, CA 95616, USA. javandewater@ucdavis.edu.

ABSTRACT

Background: Autism is a neurodevelopmental disorder characterized by impairments in social interaction and deficits in verbal and nonverbal communication, together with the presence of repetitive behaviors or a limited repertoire of activities and interests. The causes of autism are currently unclear. In a previous study, we determined that 21% of children with autism have plasma autoantibodies that are immunoreactive with a population of neurons in the cerebellum that appear to be Golgi cells, which are GABAergic interneurons.

Methods: We have extended this analysis by examining plasma immunoreactivity in the remainder of the brain. To determine cell specificity, double-labeling studies that included one of the calcium-binding proteins that are commonly colocalized in GABAergic neurons (calbindin, parvalbumin or calretinin) were also carried out to determine which GABAergic neurons are immunoreactive. Coronal sections through the rostrocaudal extent of the macaque monkey brain were reacted with plasma from each of seven individuals with autism who had previously demonstrated positive Golgi cell staining, as well as six negative controls. In addition, brain sections from adult male mice were similarly examined.

Results: In each case, specific staining was observed for neurons that had the morphological appearance of interneurons. By double-labeling sections with plasma and with antibodies directed against γ-aminobutyric acid (GABA), we determined that all autoantibody-positive neurons were GABAergic. However, not all GABAergic neurons were autoantibody-positive. Calbindin was colabeled in several of the autoantibody-labeled cells, while parvalbumin colabeling was less frequently observed. Autoantibody-positive cells rarely expressed calretinin. Sections from the mouse brain processed similarly to the primate sections also demonstrated immunoreactivity to interneurons distributed throughout the neocortex and many subcortical regions. Some cell populations stained in the primate (such as the Golgi neurons in the cerebellum) were not as robustly immunoreactive in the mouse brain.

Conclusions: These results suggest that the earlier report of autoantibody immunoreactivity to specific cells in the cerebellum extend to other regions of the brain. Further, these findings confirm the autoantibody-targeted cells to be a subpopulation of GABAergic interneurons. The potential impact of these autoantibodies on GABAergic disruption with respect to the etiology of autism is discussed herein.

No MeSH data available.


Related in: MedlinePlus