Limits...
The role of calcineurin/NFAT in SFRP2 induced angiogenesis--a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus.

Siamakpour-Reihani S, Caster J, Bandhu Nepal D, Courtwright A, Hilliard E, Usary J, Ketelsen D, Darr D, Shen XJ, Patterson C, Klauber-Demore N - PLoS ONE (2011)

Bottom Line: The FK506-FKBP12 complex associates with calcineurin and inhibits its phosphatase activity, resulting in inhibition of nuclear translocation of nuclear factor of activated T-cells (NFAT).To show that NFATc3 is required for SFRP2 stimulated angiogenesis, NFATc3 was silenced with shRNA in endothelial cells.Sham transfected cells responded to SFRP2 stimulation in a tube formation assay with an increase in the number of branch points (p<0.003), however, cells transfected with shRNA to NFATc3 showed no increase in tube formation in response to SFRP2.

View Article: PubMed Central - PubMed

Affiliation: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

ABSTRACT
Tacrolimus (FK506) is an immunosuppressive drug that binds to the immunophilin FKBPB12. The FK506-FKBP12 complex associates with calcineurin and inhibits its phosphatase activity, resulting in inhibition of nuclear translocation of nuclear factor of activated T-cells (NFAT). There is increasing data supporting a critical role of NFAT in mediating angiogenic responses stimulated by both vascular endothelial growth factor (VEGF) and a novel angiogenesis factor, secreted frizzled-related protein 2 (SFRP2). Since both VEGF and SFRP2 are expressed in breast carcinomas, we hypothesized that tacrolimus would inhibit breast carcinoma growth. Using IHC (IHC) with antibodies to FKBP12 on breast carcinomas we found that FKBP12 localizes to breast tumor vasculature. Treatment of MMTV-neu transgenic mice with tacrolimus (3 mg/kg i.p. daily) (n = 19) resulted in a 73% reduction in the growth rate for tacrolimus treated mice compared to control (n = 15), p = 0.003; which was associated with an 82% reduction in tumor microvascular density (p<0.001) by IHC. Tacrolimus (1 µM) inhibited SFRP2 induced endothelial tube formation by 71% (p = 0.005) and inhibited VEGF induced endothelial tube formation by 67% (p = 0.004). To show that NFATc3 is required for SFRP2 stimulated angiogenesis, NFATc3 was silenced with shRNA in endothelial cells. Sham transfected cells responded to SFRP2 stimulation in a tube formation assay with an increase in the number of branch points (p<0.003), however, cells transfected with shRNA to NFATc3 showed no increase in tube formation in response to SFRP2. This demonstrates that NFATc3 is required for SFRP2 induced tube formation, and tacrolimus inhibits angiogenesis in vitro and breast carcinoma growth in vivo. This provides a rationale for examining the therapeutic potential of tacrolimus at inhibiting breast carcinoma growth in humans.

Show MeSH

Related in: MedlinePlus

Tacrolimus inhibited breast cancer and endothelial cell migration in a scratch wound migration assay.A) MMTV-neu breast cancer cells were plated in a scratch wound assay as described in “Material and Methods”. A wound was formed with a 1 mm pipette tip, and tacrolimus or control was added to the wells. Migration was measured at various time points with an ocular micrometer. Tacrolimus statistically significantly inhibited MMTV-neu breast tumor migration at 1 and 10 µM (p<0.05). B) 2H11 cells were plated in a tube formation assay without SFRP2 (Control 1.5% DMSO), with SFRP2 7 nM and 1.5% DMSO, or with SFRP2 (7 nM)+tacrolimus (0.1–10 µM in 1.5% DMSO). SFRP2 induced endothelial cell migration compared to control, which was statistically significantly inhibited by tacrolimus at 0.1, 1 and 10 µM.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3108822&req=5

pone-0020412-g007: Tacrolimus inhibited breast cancer and endothelial cell migration in a scratch wound migration assay.A) MMTV-neu breast cancer cells were plated in a scratch wound assay as described in “Material and Methods”. A wound was formed with a 1 mm pipette tip, and tacrolimus or control was added to the wells. Migration was measured at various time points with an ocular micrometer. Tacrolimus statistically significantly inhibited MMTV-neu breast tumor migration at 1 and 10 µM (p<0.05). B) 2H11 cells were plated in a tube formation assay without SFRP2 (Control 1.5% DMSO), with SFRP2 7 nM and 1.5% DMSO, or with SFRP2 (7 nM)+tacrolimus (0.1–10 µM in 1.5% DMSO). SFRP2 induced endothelial cell migration compared to control, which was statistically significantly inhibited by tacrolimus at 0.1, 1 and 10 µM.

Mentions: The migration properties of tacrolimus on 2H11 endothelial cells and MMTV-neu breast carcinoma cells were evaluated using a scratch wound assay. Tacrolimus (1 uM) inhibited the migration of MMTV-neu cell migration at 24 hours by 45% (p = 0.04, Fig. 7A), and inhibited the migration of SFRP2 stimulated 2H11 cells at 20 hours by 20% (P = 0.008, Fig. 7B). This shows that tacrolimus has a direct effect on breast tumor cells in addition to its antiangiogenic effect.


The role of calcineurin/NFAT in SFRP2 induced angiogenesis--a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus.

Siamakpour-Reihani S, Caster J, Bandhu Nepal D, Courtwright A, Hilliard E, Usary J, Ketelsen D, Darr D, Shen XJ, Patterson C, Klauber-Demore N - PLoS ONE (2011)

Tacrolimus inhibited breast cancer and endothelial cell migration in a scratch wound migration assay.A) MMTV-neu breast cancer cells were plated in a scratch wound assay as described in “Material and Methods”. A wound was formed with a 1 mm pipette tip, and tacrolimus or control was added to the wells. Migration was measured at various time points with an ocular micrometer. Tacrolimus statistically significantly inhibited MMTV-neu breast tumor migration at 1 and 10 µM (p<0.05). B) 2H11 cells were plated in a tube formation assay without SFRP2 (Control 1.5% DMSO), with SFRP2 7 nM and 1.5% DMSO, or with SFRP2 (7 nM)+tacrolimus (0.1–10 µM in 1.5% DMSO). SFRP2 induced endothelial cell migration compared to control, which was statistically significantly inhibited by tacrolimus at 0.1, 1 and 10 µM.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3108822&req=5

pone-0020412-g007: Tacrolimus inhibited breast cancer and endothelial cell migration in a scratch wound migration assay.A) MMTV-neu breast cancer cells were plated in a scratch wound assay as described in “Material and Methods”. A wound was formed with a 1 mm pipette tip, and tacrolimus or control was added to the wells. Migration was measured at various time points with an ocular micrometer. Tacrolimus statistically significantly inhibited MMTV-neu breast tumor migration at 1 and 10 µM (p<0.05). B) 2H11 cells were plated in a tube formation assay without SFRP2 (Control 1.5% DMSO), with SFRP2 7 nM and 1.5% DMSO, or with SFRP2 (7 nM)+tacrolimus (0.1–10 µM in 1.5% DMSO). SFRP2 induced endothelial cell migration compared to control, which was statistically significantly inhibited by tacrolimus at 0.1, 1 and 10 µM.
Mentions: The migration properties of tacrolimus on 2H11 endothelial cells and MMTV-neu breast carcinoma cells were evaluated using a scratch wound assay. Tacrolimus (1 uM) inhibited the migration of MMTV-neu cell migration at 24 hours by 45% (p = 0.04, Fig. 7A), and inhibited the migration of SFRP2 stimulated 2H11 cells at 20 hours by 20% (P = 0.008, Fig. 7B). This shows that tacrolimus has a direct effect on breast tumor cells in addition to its antiangiogenic effect.

Bottom Line: The FK506-FKBP12 complex associates with calcineurin and inhibits its phosphatase activity, resulting in inhibition of nuclear translocation of nuclear factor of activated T-cells (NFAT).To show that NFATc3 is required for SFRP2 stimulated angiogenesis, NFATc3 was silenced with shRNA in endothelial cells.Sham transfected cells responded to SFRP2 stimulation in a tube formation assay with an increase in the number of branch points (p<0.003), however, cells transfected with shRNA to NFATc3 showed no increase in tube formation in response to SFRP2.

View Article: PubMed Central - PubMed

Affiliation: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

ABSTRACT
Tacrolimus (FK506) is an immunosuppressive drug that binds to the immunophilin FKBPB12. The FK506-FKBP12 complex associates with calcineurin and inhibits its phosphatase activity, resulting in inhibition of nuclear translocation of nuclear factor of activated T-cells (NFAT). There is increasing data supporting a critical role of NFAT in mediating angiogenic responses stimulated by both vascular endothelial growth factor (VEGF) and a novel angiogenesis factor, secreted frizzled-related protein 2 (SFRP2). Since both VEGF and SFRP2 are expressed in breast carcinomas, we hypothesized that tacrolimus would inhibit breast carcinoma growth. Using IHC (IHC) with antibodies to FKBP12 on breast carcinomas we found that FKBP12 localizes to breast tumor vasculature. Treatment of MMTV-neu transgenic mice with tacrolimus (3 mg/kg i.p. daily) (n = 19) resulted in a 73% reduction in the growth rate for tacrolimus treated mice compared to control (n = 15), p = 0.003; which was associated with an 82% reduction in tumor microvascular density (p<0.001) by IHC. Tacrolimus (1 µM) inhibited SFRP2 induced endothelial tube formation by 71% (p = 0.005) and inhibited VEGF induced endothelial tube formation by 67% (p = 0.004). To show that NFATc3 is required for SFRP2 stimulated angiogenesis, NFATc3 was silenced with shRNA in endothelial cells. Sham transfected cells responded to SFRP2 stimulation in a tube formation assay with an increase in the number of branch points (p<0.003), however, cells transfected with shRNA to NFATc3 showed no increase in tube formation in response to SFRP2. This demonstrates that NFATc3 is required for SFRP2 induced tube formation, and tacrolimus inhibits angiogenesis in vitro and breast carcinoma growth in vivo. This provides a rationale for examining the therapeutic potential of tacrolimus at inhibiting breast carcinoma growth in humans.

Show MeSH
Related in: MedlinePlus