Limits...
Genetic diversity and population history of a critically endangered primate, the northern muriqui (Brachyteles hypoxanthus).

Chaves PB, Alvarenga CS, Possamai Cde B, Dias LG, Boubli JP, Strier KB, Mendes SL, Fagundes V - PLoS ONE (2011)

Bottom Line: We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion.In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (Φ(ST) = 0.49, Φ(CT) = 0.24), and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene.We suggest that these populations be treated as discrete units for conservation management purposes.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil.

ABSTRACT
Social, ecological, and historical processes affect the genetic structure of primate populations, and therefore have key implications for the conservation of endangered species. The northern muriqui (Brachyteles hypoxanthus) is a critically endangered New World monkey and a flagship species for the conservation of the Atlantic Forest hotspot. Yet, like other neotropical primates, little is known about its population history and the genetic structure of remnant populations. We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion. Bayesian and classic analyses show that this finding may be attributed to the joint contribution of female-biased dispersal, demographic stability, and a relatively large historic population size. Past population stability is consistent with a central Atlantic Forest Pleistocene refuge. In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (Φ(ST) = 0.49, Φ(CT) = 0.24), and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene. Genetic diversity is higher in populations living in larger areas (>2,000 hectares), but it is remarkably low in the species overall (θ = 0.018). Three populations occurring in protected reserves and one fragmented population inhabiting private lands harbor 22 out of 23 haplotypes, most of which are population-exclusive, and therefore represent patchy repositories of the species' genetic diversity. We suggest that these populations be treated as discrete units for conservation management purposes.

Show MeSH

Related in: MedlinePlus

Sampling sites and geographic distribution of the northern muriqui.Map highlighting the southeast section of Brazil with sampled populations overlaid on the northern muriqui distribution, which is based on [36] (left, state acronyms: BA – Bahia, MG – Minas Gerais, ES – Espírito Santo, RJ – Rio de Janeiro). Sampling sites and some of the landscape features at SMJ are shown on the large map (right).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3108597&req=5

pone-0020722-g001: Sampling sites and geographic distribution of the northern muriqui.Map highlighting the southeast section of Brazil with sampled populations overlaid on the northern muriqui distribution, which is based on [36] (left, state acronyms: BA – Bahia, MG – Minas Gerais, ES – Espírito Santo, RJ – Rio de Janeiro). Sampling sites and some of the landscape features at SMJ are shown on the large map (right).

Mentions: Fecal samples were collected noninvasively between July 2002 and December 2004 from 151 free-ranging animals in eight geographic sites (Fig. 1, Table 1). Each geographic site is treated as population hereafter. These samples represent 17.6% of the total known northern muriqui census population size and cover most of the species’ present range, with the exception of its northern limit [27]. Experienced observers collected fresh droppings from individuals identified by natural fur and facial markings during routine censusing. Animals were neither manipulated nor disturbed during the collecting procedures. The samples were dry-preserved at −20°C in 50 ml vials containing silica beads. We included one additional sequence (GenBank accession number AF213966) [36] from Fazenda Esmeralda (FE) for a total sample size of 152.


Genetic diversity and population history of a critically endangered primate, the northern muriqui (Brachyteles hypoxanthus).

Chaves PB, Alvarenga CS, Possamai Cde B, Dias LG, Boubli JP, Strier KB, Mendes SL, Fagundes V - PLoS ONE (2011)

Sampling sites and geographic distribution of the northern muriqui.Map highlighting the southeast section of Brazil with sampled populations overlaid on the northern muriqui distribution, which is based on [36] (left, state acronyms: BA – Bahia, MG – Minas Gerais, ES – Espírito Santo, RJ – Rio de Janeiro). Sampling sites and some of the landscape features at SMJ are shown on the large map (right).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3108597&req=5

pone-0020722-g001: Sampling sites and geographic distribution of the northern muriqui.Map highlighting the southeast section of Brazil with sampled populations overlaid on the northern muriqui distribution, which is based on [36] (left, state acronyms: BA – Bahia, MG – Minas Gerais, ES – Espírito Santo, RJ – Rio de Janeiro). Sampling sites and some of the landscape features at SMJ are shown on the large map (right).
Mentions: Fecal samples were collected noninvasively between July 2002 and December 2004 from 151 free-ranging animals in eight geographic sites (Fig. 1, Table 1). Each geographic site is treated as population hereafter. These samples represent 17.6% of the total known northern muriqui census population size and cover most of the species’ present range, with the exception of its northern limit [27]. Experienced observers collected fresh droppings from individuals identified by natural fur and facial markings during routine censusing. Animals were neither manipulated nor disturbed during the collecting procedures. The samples were dry-preserved at −20°C in 50 ml vials containing silica beads. We included one additional sequence (GenBank accession number AF213966) [36] from Fazenda Esmeralda (FE) for a total sample size of 152.

Bottom Line: We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion.In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (Φ(ST) = 0.49, Φ(CT) = 0.24), and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene.We suggest that these populations be treated as discrete units for conservation management purposes.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil.

ABSTRACT
Social, ecological, and historical processes affect the genetic structure of primate populations, and therefore have key implications for the conservation of endangered species. The northern muriqui (Brachyteles hypoxanthus) is a critically endangered New World monkey and a flagship species for the conservation of the Atlantic Forest hotspot. Yet, like other neotropical primates, little is known about its population history and the genetic structure of remnant populations. We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion. Bayesian and classic analyses show that this finding may be attributed to the joint contribution of female-biased dispersal, demographic stability, and a relatively large historic population size. Past population stability is consistent with a central Atlantic Forest Pleistocene refuge. In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (Φ(ST) = 0.49, Φ(CT) = 0.24), and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene. Genetic diversity is higher in populations living in larger areas (>2,000 hectares), but it is remarkably low in the species overall (θ = 0.018). Three populations occurring in protected reserves and one fragmented population inhabiting private lands harbor 22 out of 23 haplotypes, most of which are population-exclusive, and therefore represent patchy repositories of the species' genetic diversity. We suggest that these populations be treated as discrete units for conservation management purposes.

Show MeSH
Related in: MedlinePlus