Limits...
Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience.

Jensen O, Bahramisharif A, Oostenveld R, Klanke S, Hadjipapas A, Okazaki YO, van Gerven MA - Front Psychol (2011)

Bottom Line: This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior.In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development.These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

View Article: PubMed Central - PubMed

Affiliation: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Netherlands.

ABSTRACT
Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

No MeSH data available.


Related in: MedlinePlus

A schematic illustration of how real-time data access can be implemented. This example depicts the approached developed within the FieldTrip package working in conjunction with an MEG system. The MEG system acquisition software (Acq) writes data to a limited capacity memory segment set up on the acquisition computer (shared memory segment), which is the manufacturer-specific online interface. An external, manufacturer-independent buffer (FieldTrip buffer) is set up on the same or a different computer. An agent (acq2ft) continually monitors the shared memory segment for new data and copies them to the external buffer as soon as these become available. Once the data is in the external buffer they can be accessed and analyzed in Matlab for the purposes of the BCI. Crucially, the rapid copying of new data as soon as they become available to an external buffer deems the reverse-engineering of the MEG system data writing process superfluous.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3108578&req=5

Figure 6: A schematic illustration of how real-time data access can be implemented. This example depicts the approached developed within the FieldTrip package working in conjunction with an MEG system. The MEG system acquisition software (Acq) writes data to a limited capacity memory segment set up on the acquisition computer (shared memory segment), which is the manufacturer-specific online interface. An external, manufacturer-independent buffer (FieldTrip buffer) is set up on the same or a different computer. An agent (acq2ft) continually monitors the shared memory segment for new data and copies them to the external buffer as soon as these become available. Once the data is in the external buffer they can be accessed and analyzed in Matlab for the purposes of the BCI. Crucially, the rapid copying of new data as soon as they become available to an external buffer deems the reverse-engineering of the MEG system data writing process superfluous.

Mentions: The details pertaining to the data writing process and the memory allocated to the online interface are specific to each system and different for systems of different manufacturers. In this light, the best option appears to be to devise a system which does not depend on the specific details of the interface provided by the manufacturers. This is precisely what has been developed at the in the FieldTrip toolbox, namely an access scheme to real-time data, which is platform and hardware independent. This access scheme is part of the open source FieldTrip software package and can be used for real-time streaming of MEG, EEG, and fMRI signals (http://fieldtrip.fcdonders.nl/development/realtime). The implementation of this real-time access scheme is illustrated schematically in Figure 6.


Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience.

Jensen O, Bahramisharif A, Oostenveld R, Klanke S, Hadjipapas A, Okazaki YO, van Gerven MA - Front Psychol (2011)

A schematic illustration of how real-time data access can be implemented. This example depicts the approached developed within the FieldTrip package working in conjunction with an MEG system. The MEG system acquisition software (Acq) writes data to a limited capacity memory segment set up on the acquisition computer (shared memory segment), which is the manufacturer-specific online interface. An external, manufacturer-independent buffer (FieldTrip buffer) is set up on the same or a different computer. An agent (acq2ft) continually monitors the shared memory segment for new data and copies them to the external buffer as soon as these become available. Once the data is in the external buffer they can be accessed and analyzed in Matlab for the purposes of the BCI. Crucially, the rapid copying of new data as soon as they become available to an external buffer deems the reverse-engineering of the MEG system data writing process superfluous.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3108578&req=5

Figure 6: A schematic illustration of how real-time data access can be implemented. This example depicts the approached developed within the FieldTrip package working in conjunction with an MEG system. The MEG system acquisition software (Acq) writes data to a limited capacity memory segment set up on the acquisition computer (shared memory segment), which is the manufacturer-specific online interface. An external, manufacturer-independent buffer (FieldTrip buffer) is set up on the same or a different computer. An agent (acq2ft) continually monitors the shared memory segment for new data and copies them to the external buffer as soon as these become available. Once the data is in the external buffer they can be accessed and analyzed in Matlab for the purposes of the BCI. Crucially, the rapid copying of new data as soon as they become available to an external buffer deems the reverse-engineering of the MEG system data writing process superfluous.
Mentions: The details pertaining to the data writing process and the memory allocated to the online interface are specific to each system and different for systems of different manufacturers. In this light, the best option appears to be to devise a system which does not depend on the specific details of the interface provided by the manufacturers. This is precisely what has been developed at the in the FieldTrip toolbox, namely an access scheme to real-time data, which is platform and hardware independent. This access scheme is part of the open source FieldTrip software package and can be used for real-time streaming of MEG, EEG, and fMRI signals (http://fieldtrip.fcdonders.nl/development/realtime). The implementation of this real-time access scheme is illustrated schematically in Figure 6.

Bottom Line: This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior.In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development.These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

View Article: PubMed Central - PubMed

Affiliation: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Netherlands.

ABSTRACT
Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

No MeSH data available.


Related in: MedlinePlus