Limits...
Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience.

Jensen O, Bahramisharif A, Oostenveld R, Klanke S, Hadjipapas A, Okazaki YO, van Gerven MA - Front Psychol (2011)

Bottom Line: This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior.In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development.These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

View Article: PubMed Central - PubMed

Affiliation: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Netherlands.

ABSTRACT
Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

No MeSH data available.


Related in: MedlinePlus

Hemispheric alpha lateralization in response to left or right covert attention. This effect has later been tested as a control signal for BCI. When subjects were asked to attend to the right, left hemisphere alpha was depressed compared to when attention was directed to the left. The reverse effect was found over the right hemisphere. Reproduced with permission from Worden et al. (2000).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3108578&req=5

Figure 3: Hemispheric alpha lateralization in response to left or right covert attention. This effect has later been tested as a control signal for BCI. When subjects were asked to attend to the right, left hemisphere alpha was depressed compared to when attention was directed to the left. The reverse effect was found over the right hemisphere. Reproduced with permission from Worden et al. (2000).

Mentions: Which tasks might be optimal for modulating the alpha activity in a BCI setting? A now classic EEG study demonstrated that posterior alpha is modulated by covert spatial attention as seen in Figure 3 (Worden et al., 2000). Subjects were required to fixate at the center of a screen while covertly attending to a symbol in either the lower left or right hemifield. This manipulation produces a strong depression in the alpha activity in the hemisphere contralateral the attended hemifield compared to the alpha activity in the ipsilateral hemisphere. Can this hemispheric lateralization in alpha activity serve as a control signal for BCI? This question has been investigated in an MEG experiment in which data were subjected to single trial classification (Van Gerven et al., 2009). In several subjects it was indeed possible to reliably decode the direction of attention in individual trials of about 1 s length. The principle has also been applied in an online BCI setup (Bahramisharif et al., 2010a). The aim of the subjects was to move the “background” of a scene to the left or the right while fixating at the center of the screen. By covertly attending to the left or the right, a few subjects succeeded in moving the background in the desired direction. Previous work has established that BCI gives the feeling of a control if performance is above 70% (Kubler et al., 2004). The performance of classifying the two directions of covert attention is reported to be up to 86% for the offline experiment (Van Gerven and Jensen, 2009), and 83% for the online case (Bahramisharif et al., 2010a). This provides a proof-of-principle that modulation of hemispheric alpha lateralization by covert attention can be used as a control signal for BCI.


Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience.

Jensen O, Bahramisharif A, Oostenveld R, Klanke S, Hadjipapas A, Okazaki YO, van Gerven MA - Front Psychol (2011)

Hemispheric alpha lateralization in response to left or right covert attention. This effect has later been tested as a control signal for BCI. When subjects were asked to attend to the right, left hemisphere alpha was depressed compared to when attention was directed to the left. The reverse effect was found over the right hemisphere. Reproduced with permission from Worden et al. (2000).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3108578&req=5

Figure 3: Hemispheric alpha lateralization in response to left or right covert attention. This effect has later been tested as a control signal for BCI. When subjects were asked to attend to the right, left hemisphere alpha was depressed compared to when attention was directed to the left. The reverse effect was found over the right hemisphere. Reproduced with permission from Worden et al. (2000).
Mentions: Which tasks might be optimal for modulating the alpha activity in a BCI setting? A now classic EEG study demonstrated that posterior alpha is modulated by covert spatial attention as seen in Figure 3 (Worden et al., 2000). Subjects were required to fixate at the center of a screen while covertly attending to a symbol in either the lower left or right hemifield. This manipulation produces a strong depression in the alpha activity in the hemisphere contralateral the attended hemifield compared to the alpha activity in the ipsilateral hemisphere. Can this hemispheric lateralization in alpha activity serve as a control signal for BCI? This question has been investigated in an MEG experiment in which data were subjected to single trial classification (Van Gerven et al., 2009). In several subjects it was indeed possible to reliably decode the direction of attention in individual trials of about 1 s length. The principle has also been applied in an online BCI setup (Bahramisharif et al., 2010a). The aim of the subjects was to move the “background” of a scene to the left or the right while fixating at the center of the screen. By covertly attending to the left or the right, a few subjects succeeded in moving the background in the desired direction. Previous work has established that BCI gives the feeling of a control if performance is above 70% (Kubler et al., 2004). The performance of classifying the two directions of covert attention is reported to be up to 86% for the offline experiment (Van Gerven and Jensen, 2009), and 83% for the online case (Bahramisharif et al., 2010a). This provides a proof-of-principle that modulation of hemispheric alpha lateralization by covert attention can be used as a control signal for BCI.

Bottom Line: This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior.In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development.These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

View Article: PubMed Central - PubMed

Affiliation: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Netherlands.

ABSTRACT
Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

No MeSH data available.


Related in: MedlinePlus