Limits...
Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience.

Jensen O, Bahramisharif A, Oostenveld R, Klanke S, Hadjipapas A, Okazaki YO, van Gerven MA - Front Psychol (2011)

Bottom Line: This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior.In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development.These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

View Article: PubMed Central - PubMed

Affiliation: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Netherlands.

ABSTRACT
Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

No MeSH data available.


Related in: MedlinePlus

An increase in posterior alpha activity predicts successful long-term memory encoding. This suggests that functional inhibition of occipital cortex is a requirement for successful memory formation. (A) Subjects were instructed to rehearse visually presented word triplets during a 3.4-s period. Later memory for the triplets was tested. This allowed for characterizing the brain activity during the rehearsal interval predicting successful memory formation. (B) The alpha activity was stronger for Later Remembered compared to Later Forgotten triplets. (C) The sources of the alpha activity predicting memory encoding were localized in the occipital cortex. Reproduced with permission from Meeuwissen et al. (2010).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3108578&req=5

Figure 2: An increase in posterior alpha activity predicts successful long-term memory encoding. This suggests that functional inhibition of occipital cortex is a requirement for successful memory formation. (A) Subjects were instructed to rehearse visually presented word triplets during a 3.4-s period. Later memory for the triplets was tested. This allowed for characterizing the brain activity during the rehearsal interval predicting successful memory formation. (B) The alpha activity was stronger for Later Remembered compared to Later Forgotten triplets. (C) The sources of the alpha activity predicting memory encoding were localized in the occipital cortex. Reproduced with permission from Meeuwissen et al. (2010).

Mentions: A recent long-term memory study investigated the encoding of word sequences (Figure 2). After the words were presented, subjects had to rehearse them for a brief period of 3.4 s. Later, the memory for the word sequences was tested. This allowed for investigating the rehearsal activity associated with successful memory encoding. The key finding was that the alpha activity must be strong in occipital areas in order to support memory encoding (Meeuwissen et al., 2010). This alpha activity is likely to suppress incoming visual information interfering with the memory task. In short, it is now clear that alpha activity plays an important role in neuronal processing. Optimal processing requires alpha activity in task-irrelevant areas. These studies have helped to gain considerable insight into which tasks are effective for modulating the alpha activity. Paradigms in which covert attention is directed to different modalities or spatial locations, seem to strongly modulate the alpha activity. This insight is now being used in the development of novel BCI (Kelly et al., 2005; Van Gerven et al., 2009; Van Gerven and Jensen, 2009; Bahramisharif et al., 2010a, 2011).


Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience.

Jensen O, Bahramisharif A, Oostenveld R, Klanke S, Hadjipapas A, Okazaki YO, van Gerven MA - Front Psychol (2011)

An increase in posterior alpha activity predicts successful long-term memory encoding. This suggests that functional inhibition of occipital cortex is a requirement for successful memory formation. (A) Subjects were instructed to rehearse visually presented word triplets during a 3.4-s period. Later memory for the triplets was tested. This allowed for characterizing the brain activity during the rehearsal interval predicting successful memory formation. (B) The alpha activity was stronger for Later Remembered compared to Later Forgotten triplets. (C) The sources of the alpha activity predicting memory encoding were localized in the occipital cortex. Reproduced with permission from Meeuwissen et al. (2010).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3108578&req=5

Figure 2: An increase in posterior alpha activity predicts successful long-term memory encoding. This suggests that functional inhibition of occipital cortex is a requirement for successful memory formation. (A) Subjects were instructed to rehearse visually presented word triplets during a 3.4-s period. Later memory for the triplets was tested. This allowed for characterizing the brain activity during the rehearsal interval predicting successful memory formation. (B) The alpha activity was stronger for Later Remembered compared to Later Forgotten triplets. (C) The sources of the alpha activity predicting memory encoding were localized in the occipital cortex. Reproduced with permission from Meeuwissen et al. (2010).
Mentions: A recent long-term memory study investigated the encoding of word sequences (Figure 2). After the words were presented, subjects had to rehearse them for a brief period of 3.4 s. Later, the memory for the word sequences was tested. This allowed for investigating the rehearsal activity associated with successful memory encoding. The key finding was that the alpha activity must be strong in occipital areas in order to support memory encoding (Meeuwissen et al., 2010). This alpha activity is likely to suppress incoming visual information interfering with the memory task. In short, it is now clear that alpha activity plays an important role in neuronal processing. Optimal processing requires alpha activity in task-irrelevant areas. These studies have helped to gain considerable insight into which tasks are effective for modulating the alpha activity. Paradigms in which covert attention is directed to different modalities or spatial locations, seem to strongly modulate the alpha activity. This insight is now being used in the development of novel BCI (Kelly et al., 2005; Van Gerven et al., 2009; Van Gerven and Jensen, 2009; Bahramisharif et al., 2010a, 2011).

Bottom Line: This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior.In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development.These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

View Article: PubMed Central - PubMed

Affiliation: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Netherlands.

ABSTRACT
Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

No MeSH data available.


Related in: MedlinePlus