Limits...
Perisylvian Functional Connectivity during Processing of Sentential Negation.

Bahlmann J, Mueller JL, Makuuchi M, Friederici AD - Front Psychol (2011)

Bottom Line: As a result, we found a network including the left inferior frontal gyrus (pars triangularis, BA 45), and the left inferior parietal gyrus (BA 40) to be activated whenever negations in the main clause had to be processed.Additionally, we found increased functional coupling between the left pars triangularis (BA 45), left pars opercularis (BA 44), left SMA (BA 6), and left superior temporal gyrus (BA 42) during the processing of main clause negations.Thus, the results indicate that the left perisylvian language network synchronizes in order to resolve negations, in particular, whenever requirements on meaning integration are enhanced.

View Article: PubMed Central - PubMed

Affiliation: Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.

ABSTRACT
Every language has the means to reverse the truth value of a sentence by using specific linguistic markers of negation. In the present study we investigated the neural processing costs afforded by the construction of meaning in German sentences containing negation in different clause types. We studied negations within and across clause boundaries as well as single and double negations. Participants read German sentences comprising of affirmations, single negations in the main or in the subordinate clause, or double negations. As a result, we found a network including the left inferior frontal gyrus (pars triangularis, BA 45), and the left inferior parietal gyrus (BA 40) to be activated whenever negations in the main clause had to be processed. Additionally, we found increased functional coupling between the left pars triangularis (BA 45), left pars opercularis (BA 44), left SMA (BA 6), and left superior temporal gyrus (BA 42) during the processing of main clause negations. The study shows that in order to process negations that require semantic integration across clause boundaries left BA 45 interplays with other areas that have been related to language processing and/or the processing of cognitive demands and logical/conditional reasoning. Thus, the results indicate that the left perisylvian language network synchronizes in order to resolve negations, in particular, whenever requirements on meaning integration are enhanced.

No MeSH data available.


fMRI effect of negation in the main clause. The whole-brain ANOVA revealed significant activity in the left inferior frontal gyrus (LIFG, BA 45), left inferior parietal lobule (LIPL), right angular gyrus (RAG), right anterior insula (RAI), and left precentral gyrus (LPRE).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3108559&req=5

Figure 3: fMRI effect of negation in the main clause. The whole-brain ANOVA revealed significant activity in the left inferior frontal gyrus (LIFG, BA 45), left inferior parietal lobule (LIPL), right angular gyrus (RAG), right anterior insula (RAI), and left precentral gyrus (LPRE).

Mentions: A whole-brain within-subject ANOVA was performed with the factors POLARITY_MAIN and POLARITY_SUB. The main effect of POLARITY_MAIN revealed activity in left IFG (BA 45), left precentral gyrus (BA 6/44), left inferior parietal gyrus (BA 40), right anterior insula (BA 48), and right angular gyrus (BA 39/40; see Table 2 and Figure 3). The main effect of POLARITY_SUB and the interaction of POLARITY_MAIN × POLARITY_SUB did not show any significantly activated voxels.


Perisylvian Functional Connectivity during Processing of Sentential Negation.

Bahlmann J, Mueller JL, Makuuchi M, Friederici AD - Front Psychol (2011)

fMRI effect of negation in the main clause. The whole-brain ANOVA revealed significant activity in the left inferior frontal gyrus (LIFG, BA 45), left inferior parietal lobule (LIPL), right angular gyrus (RAG), right anterior insula (RAI), and left precentral gyrus (LPRE).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3108559&req=5

Figure 3: fMRI effect of negation in the main clause. The whole-brain ANOVA revealed significant activity in the left inferior frontal gyrus (LIFG, BA 45), left inferior parietal lobule (LIPL), right angular gyrus (RAG), right anterior insula (RAI), and left precentral gyrus (LPRE).
Mentions: A whole-brain within-subject ANOVA was performed with the factors POLARITY_MAIN and POLARITY_SUB. The main effect of POLARITY_MAIN revealed activity in left IFG (BA 45), left precentral gyrus (BA 6/44), left inferior parietal gyrus (BA 40), right anterior insula (BA 48), and right angular gyrus (BA 39/40; see Table 2 and Figure 3). The main effect of POLARITY_SUB and the interaction of POLARITY_MAIN × POLARITY_SUB did not show any significantly activated voxels.

Bottom Line: As a result, we found a network including the left inferior frontal gyrus (pars triangularis, BA 45), and the left inferior parietal gyrus (BA 40) to be activated whenever negations in the main clause had to be processed.Additionally, we found increased functional coupling between the left pars triangularis (BA 45), left pars opercularis (BA 44), left SMA (BA 6), and left superior temporal gyrus (BA 42) during the processing of main clause negations.Thus, the results indicate that the left perisylvian language network synchronizes in order to resolve negations, in particular, whenever requirements on meaning integration are enhanced.

View Article: PubMed Central - PubMed

Affiliation: Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.

ABSTRACT
Every language has the means to reverse the truth value of a sentence by using specific linguistic markers of negation. In the present study we investigated the neural processing costs afforded by the construction of meaning in German sentences containing negation in different clause types. We studied negations within and across clause boundaries as well as single and double negations. Participants read German sentences comprising of affirmations, single negations in the main or in the subordinate clause, or double negations. As a result, we found a network including the left inferior frontal gyrus (pars triangularis, BA 45), and the left inferior parietal gyrus (BA 40) to be activated whenever negations in the main clause had to be processed. Additionally, we found increased functional coupling between the left pars triangularis (BA 45), left pars opercularis (BA 44), left SMA (BA 6), and left superior temporal gyrus (BA 42) during the processing of main clause negations. The study shows that in order to process negations that require semantic integration across clause boundaries left BA 45 interplays with other areas that have been related to language processing and/or the processing of cognitive demands and logical/conditional reasoning. Thus, the results indicate that the left perisylvian language network synchronizes in order to resolve negations, in particular, whenever requirements on meaning integration are enhanced.

No MeSH data available.