Limits...
Perisylvian Functional Connectivity during Processing of Sentential Negation.

Bahlmann J, Mueller JL, Makuuchi M, Friederici AD - Front Psychol (2011)

Bottom Line: As a result, we found a network including the left inferior frontal gyrus (pars triangularis, BA 45), and the left inferior parietal gyrus (BA 40) to be activated whenever negations in the main clause had to be processed.Additionally, we found increased functional coupling between the left pars triangularis (BA 45), left pars opercularis (BA 44), left SMA (BA 6), and left superior temporal gyrus (BA 42) during the processing of main clause negations.Thus, the results indicate that the left perisylvian language network synchronizes in order to resolve negations, in particular, whenever requirements on meaning integration are enhanced.

View Article: PubMed Central - PubMed

Affiliation: Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.

ABSTRACT
Every language has the means to reverse the truth value of a sentence by using specific linguistic markers of negation. In the present study we investigated the neural processing costs afforded by the construction of meaning in German sentences containing negation in different clause types. We studied negations within and across clause boundaries as well as single and double negations. Participants read German sentences comprising of affirmations, single negations in the main or in the subordinate clause, or double negations. As a result, we found a network including the left inferior frontal gyrus (pars triangularis, BA 45), and the left inferior parietal gyrus (BA 40) to be activated whenever negations in the main clause had to be processed. Additionally, we found increased functional coupling between the left pars triangularis (BA 45), left pars opercularis (BA 44), left SMA (BA 6), and left superior temporal gyrus (BA 42) during the processing of main clause negations. The study shows that in order to process negations that require semantic integration across clause boundaries left BA 45 interplays with other areas that have been related to language processing and/or the processing of cognitive demands and logical/conditional reasoning. Thus, the results indicate that the left perisylvian language network synchronizes in order to resolve negations, in particular, whenever requirements on meaning integration are enhanced.

No MeSH data available.


Illustration of experimental design. Sentences were presented phrase-by-phrase. After a delay of 3 s a comprehension sentence was shown and participants should judge the correctness of the content of the sentence.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3108559&req=5

Figure 1: Illustration of experimental design. Sentences were presented phrase-by-phrase. After a delay of 3 s a comprehension sentence was shown and participants should judge the correctness of the content of the sentence.

Mentions: The experiment comprised of four different sentence types. All sentences had the same structure, namely a main clause followed by a subordinate clause (see Table 1 and Figure 1). The main clause either contained a negation “Es ist nicht wahr,…” [It is not true,…], or contained an affirmation “Es ist schon wahr,…” [It is indeed true,…]. Similarly, the subordinate clause comprised of a negation “… dass der Peter den Hans heute Morgen in der Pause nicht besuchte.” [… that Peter did not visit Hans this morning during the break.]. Accordingly, an affirmation in the subordinate clause looked like this: “… dass der Peter den Hans heute Morgen in der Pause wirklich besuchte.” [… that Peter really visited Hans this morning during the break.]. The different sentence types resulted in four different conditions. A double negation (NN) comprised of a negation in the main clause, as well as a negation in the subordinate clause. A single main clause negation (NA) had the form of a negation at the main clause and an affirmation in the subordinate clause. A single negation in the subordinate clause (AN) contained an affirmation in the main clause and a negation in the subordinate clause. Finally, the affirmative sentence (AA) has an affirmative content in both, the main and the -subordinate clause. In the affirmative sentences the filler words “schon” [indeed] and “wirklich” [really] were included. This ensured that all sentences had the same amount of words. Moreover, the filler words occurred at the same position in a sentence, as the negation statement (“nicht” [not]).


Perisylvian Functional Connectivity during Processing of Sentential Negation.

Bahlmann J, Mueller JL, Makuuchi M, Friederici AD - Front Psychol (2011)

Illustration of experimental design. Sentences were presented phrase-by-phrase. After a delay of 3 s a comprehension sentence was shown and participants should judge the correctness of the content of the sentence.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3108559&req=5

Figure 1: Illustration of experimental design. Sentences were presented phrase-by-phrase. After a delay of 3 s a comprehension sentence was shown and participants should judge the correctness of the content of the sentence.
Mentions: The experiment comprised of four different sentence types. All sentences had the same structure, namely a main clause followed by a subordinate clause (see Table 1 and Figure 1). The main clause either contained a negation “Es ist nicht wahr,…” [It is not true,…], or contained an affirmation “Es ist schon wahr,…” [It is indeed true,…]. Similarly, the subordinate clause comprised of a negation “… dass der Peter den Hans heute Morgen in der Pause nicht besuchte.” [… that Peter did not visit Hans this morning during the break.]. Accordingly, an affirmation in the subordinate clause looked like this: “… dass der Peter den Hans heute Morgen in der Pause wirklich besuchte.” [… that Peter really visited Hans this morning during the break.]. The different sentence types resulted in four different conditions. A double negation (NN) comprised of a negation in the main clause, as well as a negation in the subordinate clause. A single main clause negation (NA) had the form of a negation at the main clause and an affirmation in the subordinate clause. A single negation in the subordinate clause (AN) contained an affirmation in the main clause and a negation in the subordinate clause. Finally, the affirmative sentence (AA) has an affirmative content in both, the main and the -subordinate clause. In the affirmative sentences the filler words “schon” [indeed] and “wirklich” [really] were included. This ensured that all sentences had the same amount of words. Moreover, the filler words occurred at the same position in a sentence, as the negation statement (“nicht” [not]).

Bottom Line: As a result, we found a network including the left inferior frontal gyrus (pars triangularis, BA 45), and the left inferior parietal gyrus (BA 40) to be activated whenever negations in the main clause had to be processed.Additionally, we found increased functional coupling between the left pars triangularis (BA 45), left pars opercularis (BA 44), left SMA (BA 6), and left superior temporal gyrus (BA 42) during the processing of main clause negations.Thus, the results indicate that the left perisylvian language network synchronizes in order to resolve negations, in particular, whenever requirements on meaning integration are enhanced.

View Article: PubMed Central - PubMed

Affiliation: Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.

ABSTRACT
Every language has the means to reverse the truth value of a sentence by using specific linguistic markers of negation. In the present study we investigated the neural processing costs afforded by the construction of meaning in German sentences containing negation in different clause types. We studied negations within and across clause boundaries as well as single and double negations. Participants read German sentences comprising of affirmations, single negations in the main or in the subordinate clause, or double negations. As a result, we found a network including the left inferior frontal gyrus (pars triangularis, BA 45), and the left inferior parietal gyrus (BA 40) to be activated whenever negations in the main clause had to be processed. Additionally, we found increased functional coupling between the left pars triangularis (BA 45), left pars opercularis (BA 44), left SMA (BA 6), and left superior temporal gyrus (BA 42) during the processing of main clause negations. The study shows that in order to process negations that require semantic integration across clause boundaries left BA 45 interplays with other areas that have been related to language processing and/or the processing of cognitive demands and logical/conditional reasoning. Thus, the results indicate that the left perisylvian language network synchronizes in order to resolve negations, in particular, whenever requirements on meaning integration are enhanced.

No MeSH data available.