Limits...
Faces and eyes in human lateral prefrontal cortex.

Chan AW, Downing PE - Front Hum Neurosci (2011)

Bottom Line: Much of the work on face-selective neural activity has focused on posterior, ventral areas of the human and non-human primate brain.We examined a region at the junction of the right inferior frontal sulcus and the precentral sulcus (right inferior frontal junction or rIFJ) that responds more to faces than to several other object categories.We speculate on this role with reference to emotion perception, gaze perception, and to behavioral relevance more generally.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, Wales Institute of Cognitive Neuroscience, Bangor University Gwynedd, UK.

ABSTRACT
Much of the work on face-selective neural activity has focused on posterior, ventral areas of the human and non-human primate brain. However, electrophysiological and fMRI studies have identified face responses in the prefrontal cortex. Here we used fMRI to characterize these responses in the human prefrontal cortex compared with face selectivity in posterior ventral region. We examined a region at the junction of the right inferior frontal sulcus and the precentral sulcus (right inferior frontal junction or rIFJ) that responds more to faces than to several other object categories. We find that the rIFJ and the right fusiform face area (rFFA) are broadly similar in their responses to whole faces, headless bodies, tools, and scenes. Strikingly, however, while the rFFA preferentially responds to the whole face, the rIFJ response to faces appears to be driven primarily by the eyes. This dissociation provides clues to the functional role of the rIFJ face response. We speculate on this role with reference to emotion perception, gaze perception, and to behavioral relevance more generally.

No MeSH data available.


Related in: MedlinePlus

Results of Experiment 1. Responses of rFFA and rIFJ, based on independent functional localizers, to faces, headless bodies, tools, and outdoor scenes, in both free-viewing and 1-back tasks. Response magnitudes indicate beta weights from general linear models fit to the aggregate data from each region of interest. Error bars indicate standard error of the mean. Asterisks indicate significant differences between conditions: *p < 0.05; **p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3108382&req=5

Figure 2: Results of Experiment 1. Responses of rFFA and rIFJ, based on independent functional localizers, to faces, headless bodies, tools, and outdoor scenes, in both free-viewing and 1-back tasks. Response magnitudes indicate beta weights from general linear models fit to the aggregate data from each region of interest. Error bars indicate standard error of the mean. Asterisks indicate significant differences between conditions: *p < 0.05; **p < 0.01.

Mentions: A mixed-design ANOVA was conducted on the beta values from each participant, with ROI (within-participants), stimulus category (within-participants), and task (between participants) as factors (Figure 2). A significant main effect of category was found, F(3,21) = 25.4, p < 0.005, indicating that faces elicited the strongest activation compared to other categories. A significant ROI × category interaction, F(1,7) = 12.7, p < 0.001 was observed. There was also a significant task × category interaction F(1,7) = 6.4, p < 0.05, in the absence of a significant three-way interaction of task × category × ROI, F(3,21) = 0.34, p = 0.79. To examine the effect of categories in each ROI regardless of task, an ANOVA within each ROI was performed. We found that both rFFA [F(3,45) = 35.05, p < 0.0001] and rIFJ [F(3,45) = 18.68, p < 0.0001] showed a significant main effect of category, suggesting that both regions are selective for faces. We also examined the effect of category in each task, and found a robust main effect of category in both free-viewing task [F(3,45) = 16.87, p < 0.0001], and 1-back task [F(3,45) = 36.75, p < 0.0001]. We then conducted planned comparisons within each region and in each task. In the 1-back task, we found that the response to faces was greater than to the next-most-effective category (bodies) in each ROI [rFFA: t(7) = 2.7, p < 0.05; rIFJ: t(7) = 3.4, p < 0.05]. In the free-viewing task this difference was significant for the rFFA [t(7) = 3.6, p < 0.01], but not for rIFJ [t(7) = 0.79, p = 0.45]. However, rIFJ responded more strongly to faces than to the other two categories [scenes: t(7) = 3.5, p < 0.05; tools: t(7) = 2.8, p < 0.05].


Faces and eyes in human lateral prefrontal cortex.

Chan AW, Downing PE - Front Hum Neurosci (2011)

Results of Experiment 1. Responses of rFFA and rIFJ, based on independent functional localizers, to faces, headless bodies, tools, and outdoor scenes, in both free-viewing and 1-back tasks. Response magnitudes indicate beta weights from general linear models fit to the aggregate data from each region of interest. Error bars indicate standard error of the mean. Asterisks indicate significant differences between conditions: *p < 0.05; **p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3108382&req=5

Figure 2: Results of Experiment 1. Responses of rFFA and rIFJ, based on independent functional localizers, to faces, headless bodies, tools, and outdoor scenes, in both free-viewing and 1-back tasks. Response magnitudes indicate beta weights from general linear models fit to the aggregate data from each region of interest. Error bars indicate standard error of the mean. Asterisks indicate significant differences between conditions: *p < 0.05; **p < 0.01.
Mentions: A mixed-design ANOVA was conducted on the beta values from each participant, with ROI (within-participants), stimulus category (within-participants), and task (between participants) as factors (Figure 2). A significant main effect of category was found, F(3,21) = 25.4, p < 0.005, indicating that faces elicited the strongest activation compared to other categories. A significant ROI × category interaction, F(1,7) = 12.7, p < 0.001 was observed. There was also a significant task × category interaction F(1,7) = 6.4, p < 0.05, in the absence of a significant three-way interaction of task × category × ROI, F(3,21) = 0.34, p = 0.79. To examine the effect of categories in each ROI regardless of task, an ANOVA within each ROI was performed. We found that both rFFA [F(3,45) = 35.05, p < 0.0001] and rIFJ [F(3,45) = 18.68, p < 0.0001] showed a significant main effect of category, suggesting that both regions are selective for faces. We also examined the effect of category in each task, and found a robust main effect of category in both free-viewing task [F(3,45) = 16.87, p < 0.0001], and 1-back task [F(3,45) = 36.75, p < 0.0001]. We then conducted planned comparisons within each region and in each task. In the 1-back task, we found that the response to faces was greater than to the next-most-effective category (bodies) in each ROI [rFFA: t(7) = 2.7, p < 0.05; rIFJ: t(7) = 3.4, p < 0.05]. In the free-viewing task this difference was significant for the rFFA [t(7) = 3.6, p < 0.01], but not for rIFJ [t(7) = 0.79, p = 0.45]. However, rIFJ responded more strongly to faces than to the other two categories [scenes: t(7) = 3.5, p < 0.05; tools: t(7) = 2.8, p < 0.05].

Bottom Line: Much of the work on face-selective neural activity has focused on posterior, ventral areas of the human and non-human primate brain.We examined a region at the junction of the right inferior frontal sulcus and the precentral sulcus (right inferior frontal junction or rIFJ) that responds more to faces than to several other object categories.We speculate on this role with reference to emotion perception, gaze perception, and to behavioral relevance more generally.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, Wales Institute of Cognitive Neuroscience, Bangor University Gwynedd, UK.

ABSTRACT
Much of the work on face-selective neural activity has focused on posterior, ventral areas of the human and non-human primate brain. However, electrophysiological and fMRI studies have identified face responses in the prefrontal cortex. Here we used fMRI to characterize these responses in the human prefrontal cortex compared with face selectivity in posterior ventral region. We examined a region at the junction of the right inferior frontal sulcus and the precentral sulcus (right inferior frontal junction or rIFJ) that responds more to faces than to several other object categories. We find that the rIFJ and the right fusiform face area (rFFA) are broadly similar in their responses to whole faces, headless bodies, tools, and scenes. Strikingly, however, while the rFFA preferentially responds to the whole face, the rIFJ response to faces appears to be driven primarily by the eyes. This dissociation provides clues to the functional role of the rIFJ face response. We speculate on this role with reference to emotion perception, gaze perception, and to behavioral relevance more generally.

No MeSH data available.


Related in: MedlinePlus