Limits...
Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death.

Jeong JC, Shin WY, Kim TH, Kwon CH, Kim JH, Kim YK, Kim KH - J. Exp. Clin. Cancer Res. (2011)

Bottom Line: Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase.Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor.Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Oriental Medicine, Dongguk University, Kyung Ju, 780-714, Korea.

Show MeSH

Related in: MedlinePlus

Effect of silibinin on mitochondrial membrane potential (MMP). Cells were exposed to 30 μM silibinin for 6 h (A) and various times (B). The MMP was estimated by the uptake of a membrane potential-sensitive fluorescence dye DiCO6(3). The fluorescence intensity was analyzed using FACS analysis. Data in (B) are mean ± SEM of three independent experiments performed in duplicate. *p < 0.05 compared with control. (C) Effect of inhibitors of calpain and PKC and antioxidant on silibinin-induced disruption of MMP. Cells were exposed to 30 μM silibinin for 6 h in the presence or absence of 0.5 μM calpain inhibitor (CHO), 1 μM GF 109203X (GF), 1 μM rottlerin (Ro), and 800 units/ml catalase (Cat). The MMP was measured as described above. Data are mean ± SEM of four independent experiments performed in duplicate. *p < 0.05 compared with silibinin alone.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3108340&req=5

Figure 4: Effect of silibinin on mitochondrial membrane potential (MMP). Cells were exposed to 30 μM silibinin for 6 h (A) and various times (B). The MMP was estimated by the uptake of a membrane potential-sensitive fluorescence dye DiCO6(3). The fluorescence intensity was analyzed using FACS analysis. Data in (B) are mean ± SEM of three independent experiments performed in duplicate. *p < 0.05 compared with control. (C) Effect of inhibitors of calpain and PKC and antioxidant on silibinin-induced disruption of MMP. Cells were exposed to 30 μM silibinin for 6 h in the presence or absence of 0.5 μM calpain inhibitor (CHO), 1 μM GF 109203X (GF), 1 μM rottlerin (Ro), and 800 units/ml catalase (Cat). The MMP was measured as described above. Data are mean ± SEM of four independent experiments performed in duplicate. *p < 0.05 compared with silibinin alone.

Mentions: The increase in Bax expression may cause disruption of △ψm to induce cell death. To test the possibility, cells were exposed to silibinin and the △ψm was measured using the fluorescence dye. After silibinin treatment, disruption of △ψm was observed as evidenced by an increase in the proportion of cells with lower fluorescence intensity (Figure 4A). The reduction in △ψm was observed after 3 h of silibinin treatment and remained unchanged even after 12 h (Figure 4B).


Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death.

Jeong JC, Shin WY, Kim TH, Kwon CH, Kim JH, Kim YK, Kim KH - J. Exp. Clin. Cancer Res. (2011)

Effect of silibinin on mitochondrial membrane potential (MMP). Cells were exposed to 30 μM silibinin for 6 h (A) and various times (B). The MMP was estimated by the uptake of a membrane potential-sensitive fluorescence dye DiCO6(3). The fluorescence intensity was analyzed using FACS analysis. Data in (B) are mean ± SEM of three independent experiments performed in duplicate. *p < 0.05 compared with control. (C) Effect of inhibitors of calpain and PKC and antioxidant on silibinin-induced disruption of MMP. Cells were exposed to 30 μM silibinin for 6 h in the presence or absence of 0.5 μM calpain inhibitor (CHO), 1 μM GF 109203X (GF), 1 μM rottlerin (Ro), and 800 units/ml catalase (Cat). The MMP was measured as described above. Data are mean ± SEM of four independent experiments performed in duplicate. *p < 0.05 compared with silibinin alone.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3108340&req=5

Figure 4: Effect of silibinin on mitochondrial membrane potential (MMP). Cells were exposed to 30 μM silibinin for 6 h (A) and various times (B). The MMP was estimated by the uptake of a membrane potential-sensitive fluorescence dye DiCO6(3). The fluorescence intensity was analyzed using FACS analysis. Data in (B) are mean ± SEM of three independent experiments performed in duplicate. *p < 0.05 compared with control. (C) Effect of inhibitors of calpain and PKC and antioxidant on silibinin-induced disruption of MMP. Cells were exposed to 30 μM silibinin for 6 h in the presence or absence of 0.5 μM calpain inhibitor (CHO), 1 μM GF 109203X (GF), 1 μM rottlerin (Ro), and 800 units/ml catalase (Cat). The MMP was measured as described above. Data are mean ± SEM of four independent experiments performed in duplicate. *p < 0.05 compared with silibinin alone.
Mentions: The increase in Bax expression may cause disruption of △ψm to induce cell death. To test the possibility, cells were exposed to silibinin and the △ψm was measured using the fluorescence dye. After silibinin treatment, disruption of △ψm was observed as evidenced by an increase in the proportion of cells with lower fluorescence intensity (Figure 4A). The reduction in △ψm was observed after 3 h of silibinin treatment and remained unchanged even after 12 h (Figure 4B).

Bottom Line: Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase.Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor.Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Oriental Medicine, Dongguk University, Kyung Ju, 780-714, Korea.

Show MeSH
Related in: MedlinePlus