Limits...
A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: the case of Lombardy, Northern Italy.

Borgoni R, Tritto V, Bigliotto C, de Bartolo D - Int J Environ Res Public Health (2011)

Bottom Line: Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil.Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data.This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon.

View Article: PubMed Central - PubMed

Affiliation: Department of Statistics, University of Milan-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy. riccardo.borgoni@unimib.it

ABSTRACT
Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully.

Show MeSH

Related in: MedlinePlus

(a) Probability maps for the reference values of 200 Bq/m3. (b) Probability maps for 400 Bq/m3.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3108118&req=5

f8-ijerph-08-01420: (a) Probability maps for the reference values of 200 Bq/m3. (b) Probability maps for 400 Bq/m3.

Mentions: Using the model obtained by KED, we simulated 1,000 maps of log IRC on the grid of Figure 6(a) and after an exponential transformation, we calculated the proportion of simulated values falling above the two levels as suggested by the Euratom recommendation. Maps reported in Figures 8(a) and (b) show the results obtained by this analysis. They show that smaller values of IRC and the low probability of falling above the thresholds considered tend to occur in alluvial plain and moraine. Other geological structures seem to be correlated much more with large values of IRC. In particularly, we noted large values of IRC along the transition zone between the alluvial plain and the mountain area. This is the area of foothill deposits which are highly permeable. Hence the maps suggest a clear tendency of large IRC to be higher moving towards the northern part of the region close to the Alps, due to the presence of volcanic rock and intensive fractured dolomite rock.


A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: the case of Lombardy, Northern Italy.

Borgoni R, Tritto V, Bigliotto C, de Bartolo D - Int J Environ Res Public Health (2011)

(a) Probability maps for the reference values of 200 Bq/m3. (b) Probability maps for 400 Bq/m3.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3108118&req=5

f8-ijerph-08-01420: (a) Probability maps for the reference values of 200 Bq/m3. (b) Probability maps for 400 Bq/m3.
Mentions: Using the model obtained by KED, we simulated 1,000 maps of log IRC on the grid of Figure 6(a) and after an exponential transformation, we calculated the proportion of simulated values falling above the two levels as suggested by the Euratom recommendation. Maps reported in Figures 8(a) and (b) show the results obtained by this analysis. They show that smaller values of IRC and the low probability of falling above the thresholds considered tend to occur in alluvial plain and moraine. Other geological structures seem to be correlated much more with large values of IRC. In particularly, we noted large values of IRC along the transition zone between the alluvial plain and the mountain area. This is the area of foothill deposits which are highly permeable. Hence the maps suggest a clear tendency of large IRC to be higher moving towards the northern part of the region close to the Alps, due to the presence of volcanic rock and intensive fractured dolomite rock.

Bottom Line: Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil.Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data.This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon.

View Article: PubMed Central - PubMed

Affiliation: Department of Statistics, University of Milan-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy. riccardo.borgoni@unimib.it

ABSTRACT
Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully.

Show MeSH
Related in: MedlinePlus