Limits...
A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: the case of Lombardy, Northern Italy.

Borgoni R, Tritto V, Bigliotto C, de Bartolo D - Int J Environ Res Public Health (2011)

Bottom Line: Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil.Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data.This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon.

View Article: PubMed Central - PubMed

Affiliation: Department of Statistics, University of Milan-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy. riccardo.borgoni@unimib.it

ABSTRACT
Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully.

Show MeSH

Related in: MedlinePlus

Histogram of IRC on (a) natural and (b) log scale.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3108118&req=5

f1-ijerph-08-01420: Histogram of IRC on (a) natural and (b) log scale.

Mentions: The data considered in the present study were collected within an indoor radon gas monitoring survey conducted by the Agency for Environmental Protection (ARPA) of the Lombardy Region during 2003–2005, aimed at mapping radon indoor concentrations (IRC) in its regional territory. To carry out the survey, the region was divided into two parts, according to the morphology and bedrock types. The area with hills or mountains was investigated more intensively compared to the plain, since a higher variability in radon concentration distribution can be expected due to the geological and morphological characteristics. Measurements were performed in 3,512 buildings (working places or dwellings) located on the ground floor with the necessary characteristics to ensure the tests were representative and comparable. These measurements were carried out using a CR-39 trace detector, positioned in-situ between the end of September and the beginning of November 2003. The detectors were changed after six months and the two semester measures were recorded. The annual average values are considered in this paper. The mean value of IRC is 124 Bq/m3 ranging from 9 Bq/m3 to 1,796 Bq/m3. Table 1 shows some summary statistics of the IRC distribution in Lombardy while Figure 1(a) shows the histogram of IRC.


A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: the case of Lombardy, Northern Italy.

Borgoni R, Tritto V, Bigliotto C, de Bartolo D - Int J Environ Res Public Health (2011)

Histogram of IRC on (a) natural and (b) log scale.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3108118&req=5

f1-ijerph-08-01420: Histogram of IRC on (a) natural and (b) log scale.
Mentions: The data considered in the present study were collected within an indoor radon gas monitoring survey conducted by the Agency for Environmental Protection (ARPA) of the Lombardy Region during 2003–2005, aimed at mapping radon indoor concentrations (IRC) in its regional territory. To carry out the survey, the region was divided into two parts, according to the morphology and bedrock types. The area with hills or mountains was investigated more intensively compared to the plain, since a higher variability in radon concentration distribution can be expected due to the geological and morphological characteristics. Measurements were performed in 3,512 buildings (working places or dwellings) located on the ground floor with the necessary characteristics to ensure the tests were representative and comparable. These measurements were carried out using a CR-39 trace detector, positioned in-situ between the end of September and the beginning of November 2003. The detectors were changed after six months and the two semester measures were recorded. The annual average values are considered in this paper. The mean value of IRC is 124 Bq/m3 ranging from 9 Bq/m3 to 1,796 Bq/m3. Table 1 shows some summary statistics of the IRC distribution in Lombardy while Figure 1(a) shows the histogram of IRC.

Bottom Line: Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil.Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data.This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon.

View Article: PubMed Central - PubMed

Affiliation: Department of Statistics, University of Milan-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy. riccardo.borgoni@unimib.it

ABSTRACT
Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully.

Show MeSH
Related in: MedlinePlus