Limits...
Spatial multicriteria decision analysis of flood risks in aging-dam management in China: a framework and case study.

Yang M, Qian X, Zhang Y, Sheng J, Shen D, Ge Y - Int J Environ Res Public Health (2011)

Bottom Line: Approximately 30,000 dams in China are aging and are considered to be high-level risks.Based on the theories of spatial multicriteria decision analysis, this report generalizes a framework consisting of scenario definition, problem structuring, criteria construction, spatial quantification of criteria, criteria weighting, decision rules, sensitivity analyses, and scenario appraisal.With adjustments and improvement to the specific methods (according to the circumstances and available data) this framework may be applied to other sites.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China. yngjyangmeng@gmail.com

ABSTRACT
Approximately 30,000 dams in China are aging and are considered to be high-level risks. Developing a framework for analyzing spatial multicriteria flood risk is crucial to ranking management scenarios for these dams, especially in densely populated areas. Based on the theories of spatial multicriteria decision analysis, this report generalizes a framework consisting of scenario definition, problem structuring, criteria construction, spatial quantification of criteria, criteria weighting, decision rules, sensitivity analyses, and scenario appraisal. The framework is presented in detail by using a case study to rank dam rehabilitation, decommissioning and existing-condition scenarios. The results show that there was a serious inundation, and that a dam rehabilitation scenario could reduce the multicriteria flood risk by 0.25 in the most affected areas; this indicates a mean risk decrease of less than 23%. Although increased risk (<0.20) was found for some residential and commercial buildings, if the dam were to be decommissioned, the mean risk would not be greater than the current existing risk, indicating that the dam rehabilitation scenario had a higher rank for decreasing the flood risk than the decommissioning scenario, but that dam rehabilitation alone might be of little help in abating flood risk. With adjustments and improvement to the specific methods (according to the circumstances and available data) this framework may be applied to other sites.

Show MeSH

Related in: MedlinePlus

Study area and locations of important elements vulnerable to flood damage.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3108115&req=5

f2-ijerph-08-01368: Study area and locations of important elements vulnerable to flood damage.

Mentions: The study area was the southwest region of Chuzhou City, which is situated at 32.3° N, 118.5° E in Anhui Province, China. The area slopes from Langya Mountain in the southwest to the Qingliu River (Figure 2), and changes topographically from mountainous terrain to flat land. It is located in the East Asian monsoon zone and has an annual average temperature of 15.2 °C and an annual average precipitation of 1,034 mm (57% of which occurs between June and August). There was a small channel that drained water from the upper mountain area to the Qingliu River. During the progress of city expansion, the natural channel was mostly encroached upon, thus compounding flooding problems. The Heiwa Dam, located at the foot of Langya Mountain (Figure 2), is an earthen dam built in 1950 for irrigation and mountain flood control. Owing to the poor construction quality and management, the dam has aged and deteriorated over the past 60 years. It is no longer operated for its original purpose because the surrounding farmlands have been largely converted to urban areas. The dam site and its surrounding areas have been allocated to the construction of a new campus of Chuzhou Normal University.


Spatial multicriteria decision analysis of flood risks in aging-dam management in China: a framework and case study.

Yang M, Qian X, Zhang Y, Sheng J, Shen D, Ge Y - Int J Environ Res Public Health (2011)

Study area and locations of important elements vulnerable to flood damage.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3108115&req=5

f2-ijerph-08-01368: Study area and locations of important elements vulnerable to flood damage.
Mentions: The study area was the southwest region of Chuzhou City, which is situated at 32.3° N, 118.5° E in Anhui Province, China. The area slopes from Langya Mountain in the southwest to the Qingliu River (Figure 2), and changes topographically from mountainous terrain to flat land. It is located in the East Asian monsoon zone and has an annual average temperature of 15.2 °C and an annual average precipitation of 1,034 mm (57% of which occurs between June and August). There was a small channel that drained water from the upper mountain area to the Qingliu River. During the progress of city expansion, the natural channel was mostly encroached upon, thus compounding flooding problems. The Heiwa Dam, located at the foot of Langya Mountain (Figure 2), is an earthen dam built in 1950 for irrigation and mountain flood control. Owing to the poor construction quality and management, the dam has aged and deteriorated over the past 60 years. It is no longer operated for its original purpose because the surrounding farmlands have been largely converted to urban areas. The dam site and its surrounding areas have been allocated to the construction of a new campus of Chuzhou Normal University.

Bottom Line: Approximately 30,000 dams in China are aging and are considered to be high-level risks.Based on the theories of spatial multicriteria decision analysis, this report generalizes a framework consisting of scenario definition, problem structuring, criteria construction, spatial quantification of criteria, criteria weighting, decision rules, sensitivity analyses, and scenario appraisal.With adjustments and improvement to the specific methods (according to the circumstances and available data) this framework may be applied to other sites.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China. yngjyangmeng@gmail.com

ABSTRACT
Approximately 30,000 dams in China are aging and are considered to be high-level risks. Developing a framework for analyzing spatial multicriteria flood risk is crucial to ranking management scenarios for these dams, especially in densely populated areas. Based on the theories of spatial multicriteria decision analysis, this report generalizes a framework consisting of scenario definition, problem structuring, criteria construction, spatial quantification of criteria, criteria weighting, decision rules, sensitivity analyses, and scenario appraisal. The framework is presented in detail by using a case study to rank dam rehabilitation, decommissioning and existing-condition scenarios. The results show that there was a serious inundation, and that a dam rehabilitation scenario could reduce the multicriteria flood risk by 0.25 in the most affected areas; this indicates a mean risk decrease of less than 23%. Although increased risk (<0.20) was found for some residential and commercial buildings, if the dam were to be decommissioned, the mean risk would not be greater than the current existing risk, indicating that the dam rehabilitation scenario had a higher rank for decreasing the flood risk than the decommissioning scenario, but that dam rehabilitation alone might be of little help in abating flood risk. With adjustments and improvement to the specific methods (according to the circumstances and available data) this framework may be applied to other sites.

Show MeSH
Related in: MedlinePlus