Limits...
Membrane fusion induced by small molecules and ions.

Mondal Roy S, Sarkar M - J Lipids (2011)

Bottom Line: Small molecules/ions do not share this advantage.Here we intend to present, how a variety of small molecules/ions act as independent fusogens.The detailed mechanism of some are well understood but for many it is still an unanswered question.

View Article: PubMed Central - PubMed

Affiliation: Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India.

ABSTRACT
Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes.

No MeSH data available.


Related in: MedlinePlus

Chlorpromazine.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3108104&req=5

fig11: Chlorpromazine.

Mentions: Chlorpromazine (CPZ; Figure 11) is a prototypical phenothiazine antipsychotic drug. CPZ can induce fusion of human red blood cells and viral envelopes without the aid of fusogenic proteins. However, this is achieved only when CPZ forms micelle-like aggregates [121–123]. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and so forth are used to have the images of fused vesicles. It has been found that at a concentration (2 mM) which is slightly less than the critical miceller concentration (CMC = 4 mM) of CPZ, it is able to fuse human RBC at pH higher than 6.8. These molecules act in the protein-free region of the membranes and cause fusion in the nonprotein site of the membranes [122].


Membrane fusion induced by small molecules and ions.

Mondal Roy S, Sarkar M - J Lipids (2011)

Chlorpromazine.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3108104&req=5

fig11: Chlorpromazine.
Mentions: Chlorpromazine (CPZ; Figure 11) is a prototypical phenothiazine antipsychotic drug. CPZ can induce fusion of human red blood cells and viral envelopes without the aid of fusogenic proteins. However, this is achieved only when CPZ forms micelle-like aggregates [121–123]. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and so forth are used to have the images of fused vesicles. It has been found that at a concentration (2 mM) which is slightly less than the critical miceller concentration (CMC = 4 mM) of CPZ, it is able to fuse human RBC at pH higher than 6.8. These molecules act in the protein-free region of the membranes and cause fusion in the nonprotein site of the membranes [122].

Bottom Line: Small molecules/ions do not share this advantage.Here we intend to present, how a variety of small molecules/ions act as independent fusogens.The detailed mechanism of some are well understood but for many it is still an unanswered question.

View Article: PubMed Central - PubMed

Affiliation: Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India.

ABSTRACT
Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes.

No MeSH data available.


Related in: MedlinePlus