Limits...
YqiC of Salmonella enterica serovar Typhimurium is a membrane fusogenic protein required for mice colonization.

Carrica MC, Craig PO, García-Angulo VA, Aguirre A, García-Véscovi E, Goldbaum FA, Cravero SL - BMC Microbiol. (2011)

Bottom Line: We found that YqiC shares biophysical and biochemical properties with Brucella abortus BMFP, the only previously characterized member of this group, such as a high alpha helix content, a coiled-coil domain involved in trimerization and a membrane fusogenic activity in vitro.In addition, we demonstrated that YqiC localizes at cytoplasmic and membrane subcellular fractions, that a S.This work firstly demonstrates the importance of a COG2960 member for pathogen-host interaction, and suggests a common function conserved among members of this group.

View Article: PubMed Central - HTML - PubMed

Affiliation: Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas s/n, Buenos Aires, Argentina. mcarrica@leloir.org.ar

ABSTRACT

Background: Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen which can colonize a variety of hosts, including human, causing syndromes that vary from gastroenteritis and diarrhea to systemic disease.

Results: In this work we present structural information as well as insights into the in vivo function of YqiC, a 99-residue protein of S. Typhimurium, which belongs to the cluster of the orthologous group 2960 (COG2960). We found that YqiC shares biophysical and biochemical properties with Brucella abortus BMFP, the only previously characterized member of this group, such as a high alpha helix content, a coiled-coil domain involved in trimerization and a membrane fusogenic activity in vitro. In addition, we demonstrated that YqiC localizes at cytoplasmic and membrane subcellular fractions, that a S. Typhimurium yqiC deficient strain had a severe attenuation in virulence in the murine model when inoculated both orally and intraperitoneally, and was impaired to replicate at physiological and high temperatures in vitro, although it was still able to invade and replicate inside epithelial and macrophages cell lines.

Conclusion: This work firstly demonstrates the importance of a COG2960 member for pathogen-host interaction, and suggests a common function conserved among members of this group.

Show MeSH

Related in: MedlinePlus

Quaternary structure analysis of YqiC. (A) Chemical cross-linking. Cross-linked products were separated via 15% SDS-PAGE followed by Coomassie brilliant blue staining. Protein markers are shown in kilodaltons. The numbers 0, 0.5, 1, and 5 indicate the millimolar concentrations of ethylene glycol bis (succinimidyl succinate) used. (B) Gel filtration coupled to SLS analysis. The protein was run on a Superdex-75 column and eluted with 50 mM Tris-HCl, 150 mM NaCl buffer (pH 8). The molecular mass of the protein was calculated relating its light scattering at 90° (dashed line) and refractive index (solid line) signals, and comparison of this value with that obtained for BSA as a standard.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3107778&req=5

Figure 2: Quaternary structure analysis of YqiC. (A) Chemical cross-linking. Cross-linked products were separated via 15% SDS-PAGE followed by Coomassie brilliant blue staining. Protein markers are shown in kilodaltons. The numbers 0, 0.5, 1, and 5 indicate the millimolar concentrations of ethylene glycol bis (succinimidyl succinate) used. (B) Gel filtration coupled to SLS analysis. The protein was run on a Superdex-75 column and eluted with 50 mM Tris-HCl, 150 mM NaCl buffer (pH 8). The molecular mass of the protein was calculated relating its light scattering at 90° (dashed line) and refractive index (solid line) signals, and comparison of this value with that obtained for BSA as a standard.

Mentions: On the other hand, we studied the oligomeric state of YqiC by chemical cross-linking and static light scattering. Chemical cross-linking of YqiC yielded trimers as the largest products when the amount of cross-linking reagent was increased (Figure 2A). Moreover, analysis of YqiC by static light scattering coupled to size exclusion chromatography showed a single homogeneous peak with a molecular mass of 40.2 kDa, in agreement with a trimeric structure (Figure 2B).


YqiC of Salmonella enterica serovar Typhimurium is a membrane fusogenic protein required for mice colonization.

Carrica MC, Craig PO, García-Angulo VA, Aguirre A, García-Véscovi E, Goldbaum FA, Cravero SL - BMC Microbiol. (2011)

Quaternary structure analysis of YqiC. (A) Chemical cross-linking. Cross-linked products were separated via 15% SDS-PAGE followed by Coomassie brilliant blue staining. Protein markers are shown in kilodaltons. The numbers 0, 0.5, 1, and 5 indicate the millimolar concentrations of ethylene glycol bis (succinimidyl succinate) used. (B) Gel filtration coupled to SLS analysis. The protein was run on a Superdex-75 column and eluted with 50 mM Tris-HCl, 150 mM NaCl buffer (pH 8). The molecular mass of the protein was calculated relating its light scattering at 90° (dashed line) and refractive index (solid line) signals, and comparison of this value with that obtained for BSA as a standard.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3107778&req=5

Figure 2: Quaternary structure analysis of YqiC. (A) Chemical cross-linking. Cross-linked products were separated via 15% SDS-PAGE followed by Coomassie brilliant blue staining. Protein markers are shown in kilodaltons. The numbers 0, 0.5, 1, and 5 indicate the millimolar concentrations of ethylene glycol bis (succinimidyl succinate) used. (B) Gel filtration coupled to SLS analysis. The protein was run on a Superdex-75 column and eluted with 50 mM Tris-HCl, 150 mM NaCl buffer (pH 8). The molecular mass of the protein was calculated relating its light scattering at 90° (dashed line) and refractive index (solid line) signals, and comparison of this value with that obtained for BSA as a standard.
Mentions: On the other hand, we studied the oligomeric state of YqiC by chemical cross-linking and static light scattering. Chemical cross-linking of YqiC yielded trimers as the largest products when the amount of cross-linking reagent was increased (Figure 2A). Moreover, analysis of YqiC by static light scattering coupled to size exclusion chromatography showed a single homogeneous peak with a molecular mass of 40.2 kDa, in agreement with a trimeric structure (Figure 2B).

Bottom Line: We found that YqiC shares biophysical and biochemical properties with Brucella abortus BMFP, the only previously characterized member of this group, such as a high alpha helix content, a coiled-coil domain involved in trimerization and a membrane fusogenic activity in vitro.In addition, we demonstrated that YqiC localizes at cytoplasmic and membrane subcellular fractions, that a S.This work firstly demonstrates the importance of a COG2960 member for pathogen-host interaction, and suggests a common function conserved among members of this group.

View Article: PubMed Central - HTML - PubMed

Affiliation: Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas s/n, Buenos Aires, Argentina. mcarrica@leloir.org.ar

ABSTRACT

Background: Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen which can colonize a variety of hosts, including human, causing syndromes that vary from gastroenteritis and diarrhea to systemic disease.

Results: In this work we present structural information as well as insights into the in vivo function of YqiC, a 99-residue protein of S. Typhimurium, which belongs to the cluster of the orthologous group 2960 (COG2960). We found that YqiC shares biophysical and biochemical properties with Brucella abortus BMFP, the only previously characterized member of this group, such as a high alpha helix content, a coiled-coil domain involved in trimerization and a membrane fusogenic activity in vitro. In addition, we demonstrated that YqiC localizes at cytoplasmic and membrane subcellular fractions, that a S. Typhimurium yqiC deficient strain had a severe attenuation in virulence in the murine model when inoculated both orally and intraperitoneally, and was impaired to replicate at physiological and high temperatures in vitro, although it was still able to invade and replicate inside epithelial and macrophages cell lines.

Conclusion: This work firstly demonstrates the importance of a COG2960 member for pathogen-host interaction, and suggests a common function conserved among members of this group.

Show MeSH
Related in: MedlinePlus