Limits...
Visual advantage in deaf adults linked to retinal changes.

Codina C, Pascalis O, Mody C, Toomey P, Rose J, Gummer L, Buckley D - PLoS ONE (2011)

Bottom Line: Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL) distribution compared to controls.Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity) were found.Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.

View Article: PubMed Central - PubMed

Affiliation: Academic Unit of Ophthalmology and Orthoptics, University of Sheffield, Sheffield, United Kingdom. C.Codina@Sheffield.ac.uk

ABSTRACT
The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either in humans or animals. We investigated neural changes at the retina and optic nerve head in profoundly deaf (N = 14) and hearing (N = 15) adults using Optical Coherence Tomography (OCT), an in-vivo light interference method of quantifying retinal micro-structure. We compared retinal changes with behavioural results from the same deaf and hearing adults, measuring sensitivity in the peripheral visual field using Goldmann perimetry. Deaf adults had significantly larger neural rim areas, within the optic nerve head in comparison to hearing controls suggesting greater retinal ganglion cell number. Deaf adults also demonstrated significantly larger visual field areas (indicating greater peripheral sensitivity) than controls. Furthermore, neural rim area was significantly correlated with visual field area in both deaf and hearing adults. Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL) distribution compared to controls. Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity) were found. Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.

Show MeSH

Related in: MedlinePlus

Mean areas of optic nerve head measures for deaf and hearing participants.Bars indicate areas in mm2 for the deaf (blue) and hearing (red) participants. Measurements were taken from the six radial optic nerve head scans described and error bars denote the standard error of the mean (SEM). Due to the non-normative statistical behaviour of area data, raw data measurements were root squared for statistical analysis.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3105994&req=5

pone-0020417-g001: Mean areas of optic nerve head measures for deaf and hearing participants.Bars indicate areas in mm2 for the deaf (blue) and hearing (red) participants. Measurements were taken from the six radial optic nerve head scans described and error bars denote the standard error of the mean (SEM). Due to the non-normative statistical behaviour of area data, raw data measurements were root squared for statistical analysis.

Mentions: We conducted optic nerve head analyses using ocular coherence tomography (OCT) on all deaf and hearing participants to address whether the increased neural substrate to vision robustly demonstrated at cortical level, may extend to increased neural substrate within the optic nerve. The overall outcome of these scans can be seen in Figure 1 where mean areas of the optic cup, optic disc and neural rim are shown in mm2. As can be seen the measures were generally larger in the deaf group: disc area (2.60vs 2.37 mm2), neural rim area (2.03vs1.69 mm2) and optic cup area (0.53vs0.53 mm2). Due to the non-normative behaviour of area data, data were root squared before analyses were conducted. Three separate t-tests were used to test for significant difference between deaf and hearing groups. Neural rim area was significantly thicker in the deaf than in the hearing participants (t = 2.221, p = 0.034), but differences between the optic cup (t = 1.704, p = 0.098) or optic disc (t = 2.00, p = 0.054) areas in deaf vs. controls were not significant.


Visual advantage in deaf adults linked to retinal changes.

Codina C, Pascalis O, Mody C, Toomey P, Rose J, Gummer L, Buckley D - PLoS ONE (2011)

Mean areas of optic nerve head measures for deaf and hearing participants.Bars indicate areas in mm2 for the deaf (blue) and hearing (red) participants. Measurements were taken from the six radial optic nerve head scans described and error bars denote the standard error of the mean (SEM). Due to the non-normative statistical behaviour of area data, raw data measurements were root squared for statistical analysis.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3105994&req=5

pone-0020417-g001: Mean areas of optic nerve head measures for deaf and hearing participants.Bars indicate areas in mm2 for the deaf (blue) and hearing (red) participants. Measurements were taken from the six radial optic nerve head scans described and error bars denote the standard error of the mean (SEM). Due to the non-normative statistical behaviour of area data, raw data measurements were root squared for statistical analysis.
Mentions: We conducted optic nerve head analyses using ocular coherence tomography (OCT) on all deaf and hearing participants to address whether the increased neural substrate to vision robustly demonstrated at cortical level, may extend to increased neural substrate within the optic nerve. The overall outcome of these scans can be seen in Figure 1 where mean areas of the optic cup, optic disc and neural rim are shown in mm2. As can be seen the measures were generally larger in the deaf group: disc area (2.60vs 2.37 mm2), neural rim area (2.03vs1.69 mm2) and optic cup area (0.53vs0.53 mm2). Due to the non-normative behaviour of area data, data were root squared before analyses were conducted. Three separate t-tests were used to test for significant difference between deaf and hearing groups. Neural rim area was significantly thicker in the deaf than in the hearing participants (t = 2.221, p = 0.034), but differences between the optic cup (t = 1.704, p = 0.098) or optic disc (t = 2.00, p = 0.054) areas in deaf vs. controls were not significant.

Bottom Line: Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL) distribution compared to controls.Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity) were found.Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.

View Article: PubMed Central - PubMed

Affiliation: Academic Unit of Ophthalmology and Orthoptics, University of Sheffield, Sheffield, United Kingdom. C.Codina@Sheffield.ac.uk

ABSTRACT
The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either in humans or animals. We investigated neural changes at the retina and optic nerve head in profoundly deaf (N = 14) and hearing (N = 15) adults using Optical Coherence Tomography (OCT), an in-vivo light interference method of quantifying retinal micro-structure. We compared retinal changes with behavioural results from the same deaf and hearing adults, measuring sensitivity in the peripheral visual field using Goldmann perimetry. Deaf adults had significantly larger neural rim areas, within the optic nerve head in comparison to hearing controls suggesting greater retinal ganglion cell number. Deaf adults also demonstrated significantly larger visual field areas (indicating greater peripheral sensitivity) than controls. Furthermore, neural rim area was significantly correlated with visual field area in both deaf and hearing adults. Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL) distribution compared to controls. Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity) were found. Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.

Show MeSH
Related in: MedlinePlus