Limits...
Peroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1.

Saraya R, Krikken AM, Veenhuis M, van der Klei IJ - J. Cell Biol. (2011)

Bottom Line: Pex25 cells were not themselves peroxisome deficient but instead contained a slightly increased number of peroxisomes.Peroxisomes reappeared in pex11 pex25 cells upon synthesis of Pex25, but not of Pex11.These data therefore provide new and detailed insight into factors important for de novo peroxisome formation in yeast.

View Article: PubMed Central - HTML - PubMed

Affiliation: Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Kluyver Centre for Genomics of Industrial Fermentation, University of Groningen, 9700 CC Groningen, Netherlands.

ABSTRACT
We identified two proteins, Pex25 and Rho1, which are involved in reintroduction of peroxisomes in peroxisome-deficient yeast cells. These are, together with Pex3, the first proteins identified as essential for this process. Of the three members of the Hansenula polymorpha Pex11 protein family-Pex11, Pex25, and Pex11C-only Pex25 was required for reintroduction of peroxisomes into a peroxisome-deficient mutant strain. In peroxisome-deficient pex3 cells, Pex25 localized to structures adjacent to the ER, whereas in wild-type cells it localized to peroxisomes. Pex25 cells were not themselves peroxisome deficient but instead contained a slightly increased number of peroxisomes. Interestingly, pex11 pex25 double deletion cells, in which both peroxisome fission (due to the deletion of PEX11) and reintroduction (due to deletion of PEX25) was blocked, did display a peroxisome-deficient phenotype. Peroxisomes reappeared in pex11 pex25 cells upon synthesis of Pex25, but not of Pex11. Reintroduction in the presence of Pex25 required the function of the GTPase Rho1. These data therefore provide new and detailed insight into factors important for de novo peroxisome formation in yeast.

Show MeSH

Related in: MedlinePlus

In pex3 cells Pex11 colocalizes with the ER, whereas Pex25 is present in spots adjacent to the ER. Localization of Pex11-mCherry in pex3 pex11 cells (A) or Pex25-mCherry (B) in pex3 cells (A, middle, red fluorescence). Both strains produce the ER marker protein BiPN30-GFP-HDEL. Cells were grown for 16 h on gycerol/methanol. The right panels show the merged fluorescence images. Bar, 1 µm.
© Copyright Policy - openaccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3105547&req=5

fig7: In pex3 cells Pex11 colocalizes with the ER, whereas Pex25 is present in spots adjacent to the ER. Localization of Pex11-mCherry in pex3 pex11 cells (A) or Pex25-mCherry (B) in pex3 cells (A, middle, red fluorescence). Both strains produce the ER marker protein BiPN30-GFP-HDEL. Cells were grown for 16 h on gycerol/methanol. The right panels show the merged fluorescence images. Bar, 1 µm.

Mentions: As Pex3 is initially sorted to the ER upon reintroduction in pex3 cells, we analyzed the localization of Pex25 in pex3 cells. As shown in Fig. 7 B, synthesis of Pex25-mCherry in pex3 cells results in localization of the protein in structures adjacent to the ER, marked by BiPN30-GFP-HDEL. Pex11-mCherry colocalized with the ER marker in pex3 pex11 cells (Fig. 7 A), but was never observed in spots.


Peroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1.

Saraya R, Krikken AM, Veenhuis M, van der Klei IJ - J. Cell Biol. (2011)

In pex3 cells Pex11 colocalizes with the ER, whereas Pex25 is present in spots adjacent to the ER. Localization of Pex11-mCherry in pex3 pex11 cells (A) or Pex25-mCherry (B) in pex3 cells (A, middle, red fluorescence). Both strains produce the ER marker protein BiPN30-GFP-HDEL. Cells were grown for 16 h on gycerol/methanol. The right panels show the merged fluorescence images. Bar, 1 µm.
© Copyright Policy - openaccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3105547&req=5

fig7: In pex3 cells Pex11 colocalizes with the ER, whereas Pex25 is present in spots adjacent to the ER. Localization of Pex11-mCherry in pex3 pex11 cells (A) or Pex25-mCherry (B) in pex3 cells (A, middle, red fluorescence). Both strains produce the ER marker protein BiPN30-GFP-HDEL. Cells were grown for 16 h on gycerol/methanol. The right panels show the merged fluorescence images. Bar, 1 µm.
Mentions: As Pex3 is initially sorted to the ER upon reintroduction in pex3 cells, we analyzed the localization of Pex25 in pex3 cells. As shown in Fig. 7 B, synthesis of Pex25-mCherry in pex3 cells results in localization of the protein in structures adjacent to the ER, marked by BiPN30-GFP-HDEL. Pex11-mCherry colocalized with the ER marker in pex3 pex11 cells (Fig. 7 A), but was never observed in spots.

Bottom Line: Pex25 cells were not themselves peroxisome deficient but instead contained a slightly increased number of peroxisomes.Peroxisomes reappeared in pex11 pex25 cells upon synthesis of Pex25, but not of Pex11.These data therefore provide new and detailed insight into factors important for de novo peroxisome formation in yeast.

View Article: PubMed Central - HTML - PubMed

Affiliation: Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Kluyver Centre for Genomics of Industrial Fermentation, University of Groningen, 9700 CC Groningen, Netherlands.

ABSTRACT
We identified two proteins, Pex25 and Rho1, which are involved in reintroduction of peroxisomes in peroxisome-deficient yeast cells. These are, together with Pex3, the first proteins identified as essential for this process. Of the three members of the Hansenula polymorpha Pex11 protein family-Pex11, Pex25, and Pex11C-only Pex25 was required for reintroduction of peroxisomes into a peroxisome-deficient mutant strain. In peroxisome-deficient pex3 cells, Pex25 localized to structures adjacent to the ER, whereas in wild-type cells it localized to peroxisomes. Pex25 cells were not themselves peroxisome deficient but instead contained a slightly increased number of peroxisomes. Interestingly, pex11 pex25 double deletion cells, in which both peroxisome fission (due to the deletion of PEX11) and reintroduction (due to deletion of PEX25) was blocked, did display a peroxisome-deficient phenotype. Peroxisomes reappeared in pex11 pex25 cells upon synthesis of Pex25, but not of Pex11. Reintroduction in the presence of Pex25 required the function of the GTPase Rho1. These data therefore provide new and detailed insight into factors important for de novo peroxisome formation in yeast.

Show MeSH
Related in: MedlinePlus