Limits...
Selective transmission of R5 HIV-1 variants: where is the gatekeeper?

Grivel JC, Shattock RJ, Margolis LB - J Transl Med (2011)

Bottom Line: In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes.In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s).Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.

View Article: PubMed Central - HTML - PubMed

Affiliation: Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA.

ABSTRACT
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a "gatekeeper" that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.

Show MeSH

Related in: MedlinePlus

A set of imperfect multiple barriers provides gatekeeps against HIV-1 better than a single "perfect" barrier (adapted from [194]). (a) A "perfect" barrier protects against X4 HIV-1 (left panel). If this barrier is breached (right panel), there is no protection against X4 HIV-1 infection. (b) A series of ‘imperfect’ barriers (left panel), each of which protects against X4 virus infection only five times more efficiently than against R5 HIV-1. Nevertheless the chance for X4 HIV-1 to penetrate these barriers is 3125 times lower than for R5. If one of the barriers is breached, (right panel) the system retains relatively high selectivity: The chance for X4 HIV-1 to penetrate the barriers is still 625 times lower than for R5 HIV-1.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3105506&req=5

Figure 1: A set of imperfect multiple barriers provides gatekeeps against HIV-1 better than a single "perfect" barrier (adapted from [194]). (a) A "perfect" barrier protects against X4 HIV-1 (left panel). If this barrier is breached (right panel), there is no protection against X4 HIV-1 infection. (b) A series of ‘imperfect’ barriers (left panel), each of which protects against X4 virus infection only five times more efficiently than against R5 HIV-1. Nevertheless the chance for X4 HIV-1 to penetrate these barriers is 3125 times lower than for R5. If one of the barriers is breached, (right panel) the system retains relatively high selectivity: The chance for X4 HIV-1 to penetrate the barriers is still 625 times lower than for R5 HIV-1.

Mentions: This can be illustrated by a simple model consisting of only five sequential barriers each having a selective coefficient of 5 that is the probability ratio for R5 and X4 to penetrate an individual barrier is 5:1. (Figure 1). In this over-simplified construction, although selection of an individual barrier provides only a 5:1 probability of protection against X4 penetration, five sequential barriers provide a probability of 3,125 :1. Even if one of these five barriers is breached and becomes equally permissive to X4 and R5 HIV-1, the selective power of the construction still remains high at 625:1. It is reasonable to think that the human body has many more than five barriers. Also, their selective power against X4 vs. R5 HIV-1 may be much higher than the 5 described in the above modeling. Although in vivo not all of these barriers may be sequential and/or independent, together they are sufficient to protect against X4.


Selective transmission of R5 HIV-1 variants: where is the gatekeeper?

Grivel JC, Shattock RJ, Margolis LB - J Transl Med (2011)

A set of imperfect multiple barriers provides gatekeeps against HIV-1 better than a single "perfect" barrier (adapted from [194]). (a) A "perfect" barrier protects against X4 HIV-1 (left panel). If this barrier is breached (right panel), there is no protection against X4 HIV-1 infection. (b) A series of ‘imperfect’ barriers (left panel), each of which protects against X4 virus infection only five times more efficiently than against R5 HIV-1. Nevertheless the chance for X4 HIV-1 to penetrate these barriers is 3125 times lower than for R5. If one of the barriers is breached, (right panel) the system retains relatively high selectivity: The chance for X4 HIV-1 to penetrate the barriers is still 625 times lower than for R5 HIV-1.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3105506&req=5

Figure 1: A set of imperfect multiple barriers provides gatekeeps against HIV-1 better than a single "perfect" barrier (adapted from [194]). (a) A "perfect" barrier protects against X4 HIV-1 (left panel). If this barrier is breached (right panel), there is no protection against X4 HIV-1 infection. (b) A series of ‘imperfect’ barriers (left panel), each of which protects against X4 virus infection only five times more efficiently than against R5 HIV-1. Nevertheless the chance for X4 HIV-1 to penetrate these barriers is 3125 times lower than for R5. If one of the barriers is breached, (right panel) the system retains relatively high selectivity: The chance for X4 HIV-1 to penetrate the barriers is still 625 times lower than for R5 HIV-1.
Mentions: This can be illustrated by a simple model consisting of only five sequential barriers each having a selective coefficient of 5 that is the probability ratio for R5 and X4 to penetrate an individual barrier is 5:1. (Figure 1). In this over-simplified construction, although selection of an individual barrier provides only a 5:1 probability of protection against X4 penetration, five sequential barriers provide a probability of 3,125 :1. Even if one of these five barriers is breached and becomes equally permissive to X4 and R5 HIV-1, the selective power of the construction still remains high at 625:1. It is reasonable to think that the human body has many more than five barriers. Also, their selective power against X4 vs. R5 HIV-1 may be much higher than the 5 described in the above modeling. Although in vivo not all of these barriers may be sequential and/or independent, together they are sufficient to protect against X4.

Bottom Line: In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes.In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s).Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.

View Article: PubMed Central - HTML - PubMed

Affiliation: Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA.

ABSTRACT
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a "gatekeeper" that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.

Show MeSH
Related in: MedlinePlus