Limits...
Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems.

Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W - Nat Commun (2011)

Bottom Line: The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry.We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon.The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems.

View Article: PubMed Central - PubMed

Affiliation: Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, Freiburg D-79104, Germany.

ABSTRACT
Essential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry. These findings suggest a major role in the modulation of physiology and behaviour for otp-dependent DA neurons, which correlate with the mammalian A11 group. We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon. The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems.

No MeSH data available.


Related in: MedlinePlus

Extensive arbourization of subpallial DA neurons in the telencephalon.(a–c) Z projections of confocal stacks in dorsal (Dor) and lateral (Lat) views. (a) Three GFP-tagged subpallial neurons (arrowheads) reveal extensive arbourization within the subpallium. Subpallial neurons also frequently connect the left and right subpallium through the anterior commissure (ac; magnified in right panel). Furthermore, one of the subpallial DA neurons sends a descending projection into the hypothalamus (H; arrows). (b) Two subpallial DA neurons (arrowheads) form dense local arbours but no distant projections (magnified in middle and right panels). (c) A single subpallial soma (arrowheads) radiates dense local processes ventrally into telencephalic territories (magnified in middle and right panels), projects in the anterior commissure across the midline to the right subpallium (SP), and sends a descending axon into the hypothalamus (arrows). See Supplementary Movie 5. Anterior at left, dorsal at top; 4 d.p.f. larvae; anti-TH (red), anti-GFP (green; white in middle panels with black contrast). Scale bars, 20 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3105308&req=5

f8: Extensive arbourization of subpallial DA neurons in the telencephalon.(a–c) Z projections of confocal stacks in dorsal (Dor) and lateral (Lat) views. (a) Three GFP-tagged subpallial neurons (arrowheads) reveal extensive arbourization within the subpallium. Subpallial neurons also frequently connect the left and right subpallium through the anterior commissure (ac; magnified in right panel). Furthermore, one of the subpallial DA neurons sends a descending projection into the hypothalamus (H; arrows). (b) Two subpallial DA neurons (arrowheads) form dense local arbours but no distant projections (magnified in middle and right panels). (c) A single subpallial soma (arrowheads) radiates dense local processes ventrally into telencephalic territories (magnified in middle and right panels), projects in the anterior commissure across the midline to the right subpallium (SP), and sends a descending axon into the hypothalamus (arrows). See Supplementary Movie 5. Anterior at left, dorsal at top; 4 d.p.f. larvae; anti-TH (red), anti-GFP (green; white in middle panels with black contrast). Scale bars, 20 μm.

Mentions: Figure 2 summarizes projection patterns of all CA groups. Our further analysis structured the CA groups into five classes. First, NA systems comprise LC, MO vagal and AP neurons that share the main feature of far-ranging projections (Fig. 3), whereas NA neurons of the MO interfascicular zone predominantly connect locally (Supplementary Note 2 and Supplementary Fig. S3). The second class includes local as well as intermediate length projections of DA neurons: the larval DC1 group, which contains ventral thalamic and periventricular posterior tubercular DA neurons, and the pretectal DA group (Fig. 4; detailed in Supplementary Note 3). Class 3 DA groups project exclusively locally or to adjacent brain territories: hypothalamic anterior preoptic, preoptic, DC3 and DC7 groups, as well as olfactory and retinal DA groups (Fig. 4; Supplementary Note 4 and Fig. S4). In class 4, DA connections to distant brain regions appear to be predominantly formed by the otp-dependent diencephalic DA groups 2, 4, 5 and 6 (Figs 5, 6 and 7). Finally, in the subpallium local DA neurons provide the predominant DA arbourization as well as descending projections to the hypothalamus (Fig. 8).


Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems.

Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W - Nat Commun (2011)

Extensive arbourization of subpallial DA neurons in the telencephalon.(a–c) Z projections of confocal stacks in dorsal (Dor) and lateral (Lat) views. (a) Three GFP-tagged subpallial neurons (arrowheads) reveal extensive arbourization within the subpallium. Subpallial neurons also frequently connect the left and right subpallium through the anterior commissure (ac; magnified in right panel). Furthermore, one of the subpallial DA neurons sends a descending projection into the hypothalamus (H; arrows). (b) Two subpallial DA neurons (arrowheads) form dense local arbours but no distant projections (magnified in middle and right panels). (c) A single subpallial soma (arrowheads) radiates dense local processes ventrally into telencephalic territories (magnified in middle and right panels), projects in the anterior commissure across the midline to the right subpallium (SP), and sends a descending axon into the hypothalamus (arrows). See Supplementary Movie 5. Anterior at left, dorsal at top; 4 d.p.f. larvae; anti-TH (red), anti-GFP (green; white in middle panels with black contrast). Scale bars, 20 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3105308&req=5

f8: Extensive arbourization of subpallial DA neurons in the telencephalon.(a–c) Z projections of confocal stacks in dorsal (Dor) and lateral (Lat) views. (a) Three GFP-tagged subpallial neurons (arrowheads) reveal extensive arbourization within the subpallium. Subpallial neurons also frequently connect the left and right subpallium through the anterior commissure (ac; magnified in right panel). Furthermore, one of the subpallial DA neurons sends a descending projection into the hypothalamus (H; arrows). (b) Two subpallial DA neurons (arrowheads) form dense local arbours but no distant projections (magnified in middle and right panels). (c) A single subpallial soma (arrowheads) radiates dense local processes ventrally into telencephalic territories (magnified in middle and right panels), projects in the anterior commissure across the midline to the right subpallium (SP), and sends a descending axon into the hypothalamus (arrows). See Supplementary Movie 5. Anterior at left, dorsal at top; 4 d.p.f. larvae; anti-TH (red), anti-GFP (green; white in middle panels with black contrast). Scale bars, 20 μm.
Mentions: Figure 2 summarizes projection patterns of all CA groups. Our further analysis structured the CA groups into five classes. First, NA systems comprise LC, MO vagal and AP neurons that share the main feature of far-ranging projections (Fig. 3), whereas NA neurons of the MO interfascicular zone predominantly connect locally (Supplementary Note 2 and Supplementary Fig. S3). The second class includes local as well as intermediate length projections of DA neurons: the larval DC1 group, which contains ventral thalamic and periventricular posterior tubercular DA neurons, and the pretectal DA group (Fig. 4; detailed in Supplementary Note 3). Class 3 DA groups project exclusively locally or to adjacent brain territories: hypothalamic anterior preoptic, preoptic, DC3 and DC7 groups, as well as olfactory and retinal DA groups (Fig. 4; Supplementary Note 4 and Fig. S4). In class 4, DA connections to distant brain regions appear to be predominantly formed by the otp-dependent diencephalic DA groups 2, 4, 5 and 6 (Figs 5, 6 and 7). Finally, in the subpallium local DA neurons provide the predominant DA arbourization as well as descending projections to the hypothalamus (Fig. 8).

Bottom Line: The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry.We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon.The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems.

View Article: PubMed Central - PubMed

Affiliation: Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, Freiburg D-79104, Germany.

ABSTRACT
Essential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry. These findings suggest a major role in the modulation of physiology and behaviour for otp-dependent DA neurons, which correlate with the mammalian A11 group. We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon. The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems.

No MeSH data available.


Related in: MedlinePlus