Limits...
The selfish brain: stress and eating behavior.

Peters A, Kubera B, Hubold C, Langemann D - Front Neurosci (2011)

Bottom Line: Furthermore psychosocial stress elicits a marked increase in eating behavior in the post-stress phase.Subjects ingested more carbohydrates without any preference for sweet ingredients.These experimentally observed changes of cerebral demand, supply and need are integrated into a logistic framework describing the supply chain of the selfish brain.

View Article: PubMed Central - PubMed

Affiliation: Medical Clinic 1, University of Luebeck Luebeck, Germany.

ABSTRACT
The brain occupies a special hierarchical position in human energy metabolism. If cerebral homeostasis is threatened, the brain behaves in a "selfish" manner by competing for energy resources with the body. Here we present a logistic approach, which is based on the principles of supply and demand known from economics. In this "cerebral supply chain" model, the brain constitutes the final consumer. In order to illustrate the operating mode of the cerebral supply chain, we take experimental data which allow assessing the supply, demand and need of the brain under conditions of psychosocial stress. The experimental results show that the brain under conditions of psychosocial stress actively demands energy from the body, in order to cover its increased energy needs. The data demonstrate that the stressed brain uses a mechanism referred to as "cerebral insulin suppression" to limit glucose fluxes into peripheral tissue (muscle, fat) and to enhance cerebral glucose supply. Furthermore psychosocial stress elicits a marked increase in eating behavior in the post-stress phase. Subjects ingested more carbohydrates without any preference for sweet ingredients. These experimentally observed changes of cerebral demand, supply and need are integrated into a logistic framework describing the supply chain of the selfish brain.

No MeSH data available.


Related in: MedlinePlus

Cortisol response, neuroglycopenic symptoms, and mood during stress and non-stress intervention in subjects offered a rich buffet or a meager salad. Values are means ± SEM; closed symbols, stress intervention and open symbols, non-stress intervention; *p < 0.05, +p < 0.01, significantly different from non-stress intervention, by paired t-test. For complete statistical analysis (including ANOVA for repeated measures) see original paper Hitze et al. (2010).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3105244&req=5

Figure 4: Cortisol response, neuroglycopenic symptoms, and mood during stress and non-stress intervention in subjects offered a rich buffet or a meager salad. Values are means ± SEM; closed symbols, stress intervention and open symbols, non-stress intervention; *p < 0.05, +p < 0.01, significantly different from non-stress intervention, by paired t-test. For complete statistical analysis (including ANOVA for repeated measures) see original paper Hitze et al. (2010).

Mentions: Since subjects ate 34 g extra carbohydrates when stressed, and insulin was suppressed in the postprandial replenishment phase, it is likely that the main energy flux was directed to the brain. A neuroglycopenic state developed at normal blood glucose concentrations after stress (Figure 4). Subjects showed more neuroglycopenic symptoms (assessed by a standard questionnaire usually applied in hypoglycemia research) immediately after social stress intervention. Of note, neuroglycopenic symptoms which typically occur only during hypoglycemia occurred in the presence of normal blood glucose concentrations. When subjects were provided high energy under stress conditions, post-stress neuroglycopenic symptoms were resolved. However, when subjects were offered a meager salad only the post-stress neuroglycopenic state persisted for at least 90 min.


The selfish brain: stress and eating behavior.

Peters A, Kubera B, Hubold C, Langemann D - Front Neurosci (2011)

Cortisol response, neuroglycopenic symptoms, and mood during stress and non-stress intervention in subjects offered a rich buffet or a meager salad. Values are means ± SEM; closed symbols, stress intervention and open symbols, non-stress intervention; *p < 0.05, +p < 0.01, significantly different from non-stress intervention, by paired t-test. For complete statistical analysis (including ANOVA for repeated measures) see original paper Hitze et al. (2010).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3105244&req=5

Figure 4: Cortisol response, neuroglycopenic symptoms, and mood during stress and non-stress intervention in subjects offered a rich buffet or a meager salad. Values are means ± SEM; closed symbols, stress intervention and open symbols, non-stress intervention; *p < 0.05, +p < 0.01, significantly different from non-stress intervention, by paired t-test. For complete statistical analysis (including ANOVA for repeated measures) see original paper Hitze et al. (2010).
Mentions: Since subjects ate 34 g extra carbohydrates when stressed, and insulin was suppressed in the postprandial replenishment phase, it is likely that the main energy flux was directed to the brain. A neuroglycopenic state developed at normal blood glucose concentrations after stress (Figure 4). Subjects showed more neuroglycopenic symptoms (assessed by a standard questionnaire usually applied in hypoglycemia research) immediately after social stress intervention. Of note, neuroglycopenic symptoms which typically occur only during hypoglycemia occurred in the presence of normal blood glucose concentrations. When subjects were provided high energy under stress conditions, post-stress neuroglycopenic symptoms were resolved. However, when subjects were offered a meager salad only the post-stress neuroglycopenic state persisted for at least 90 min.

Bottom Line: Furthermore psychosocial stress elicits a marked increase in eating behavior in the post-stress phase.Subjects ingested more carbohydrates without any preference for sweet ingredients.These experimentally observed changes of cerebral demand, supply and need are integrated into a logistic framework describing the supply chain of the selfish brain.

View Article: PubMed Central - PubMed

Affiliation: Medical Clinic 1, University of Luebeck Luebeck, Germany.

ABSTRACT
The brain occupies a special hierarchical position in human energy metabolism. If cerebral homeostasis is threatened, the brain behaves in a "selfish" manner by competing for energy resources with the body. Here we present a logistic approach, which is based on the principles of supply and demand known from economics. In this "cerebral supply chain" model, the brain constitutes the final consumer. In order to illustrate the operating mode of the cerebral supply chain, we take experimental data which allow assessing the supply, demand and need of the brain under conditions of psychosocial stress. The experimental results show that the brain under conditions of psychosocial stress actively demands energy from the body, in order to cover its increased energy needs. The data demonstrate that the stressed brain uses a mechanism referred to as "cerebral insulin suppression" to limit glucose fluxes into peripheral tissue (muscle, fat) and to enhance cerebral glucose supply. Furthermore psychosocial stress elicits a marked increase in eating behavior in the post-stress phase. Subjects ingested more carbohydrates without any preference for sweet ingredients. These experimentally observed changes of cerebral demand, supply and need are integrated into a logistic framework describing the supply chain of the selfish brain.

No MeSH data available.


Related in: MedlinePlus