Limits...
The selfish brain: stress and eating behavior.

Peters A, Kubera B, Hubold C, Langemann D - Front Neurosci (2011)

Bottom Line: Furthermore psychosocial stress elicits a marked increase in eating behavior in the post-stress phase.Subjects ingested more carbohydrates without any preference for sweet ingredients.These experimentally observed changes of cerebral demand, supply and need are integrated into a logistic framework describing the supply chain of the selfish brain.

View Article: PubMed Central - PubMed

Affiliation: Medical Clinic 1, University of Luebeck Luebeck, Germany.

ABSTRACT
The brain occupies a special hierarchical position in human energy metabolism. If cerebral homeostasis is threatened, the brain behaves in a "selfish" manner by competing for energy resources with the body. Here we present a logistic approach, which is based on the principles of supply and demand known from economics. In this "cerebral supply chain" model, the brain constitutes the final consumer. In order to illustrate the operating mode of the cerebral supply chain, we take experimental data which allow assessing the supply, demand and need of the brain under conditions of psychosocial stress. The experimental results show that the brain under conditions of psychosocial stress actively demands energy from the body, in order to cover its increased energy needs. The data demonstrate that the stressed brain uses a mechanism referred to as "cerebral insulin suppression" to limit glucose fluxes into peripheral tissue (muscle, fat) and to enhance cerebral glucose supply. Furthermore psychosocial stress elicits a marked increase in eating behavior in the post-stress phase. Subjects ingested more carbohydrates without any preference for sweet ingredients. These experimentally observed changes of cerebral demand, supply and need are integrated into a logistic framework describing the supply chain of the selfish brain.

No MeSH data available.


Related in: MedlinePlus

Glucose and insulin concentrations during stress and non-stress intervention in 10 men offered a rich buffet. Values are means ± SEM; closed symbols, stress intervention and open symbols, non-stress intervention; glucose concentrations are significantly different from non-stress intervention, interaction time × stress intervention: F = 3.8, ***p < 0.001, by ANOVA for repeated measures; insulin concentrations are equal between stress and non-stress intervention, interaction time × stress intervention: F = 2.5, p > 0.05, by ANOVA for repeated measures.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3105244&req=5

Figure 3: Glucose and insulin concentrations during stress and non-stress intervention in 10 men offered a rich buffet. Values are means ± SEM; closed symbols, stress intervention and open symbols, non-stress intervention; glucose concentrations are significantly different from non-stress intervention, interaction time × stress intervention: F = 3.8, ***p < 0.001, by ANOVA for repeated measures; insulin concentrations are equal between stress and non-stress intervention, interaction time × stress intervention: F = 2.5, p > 0.05, by ANOVA for repeated measures.

Mentions: Do these stress extra carbohydrates alter blood glucose concentrations? Blood glucose concentrations increased in the post-stress replenishment phase after rich buffet ingestion (Hitze et al., 2010). As expected the meal induced hyperglycemia was more pronounced in the stress compared to the non-stress intervention. Higher hyperglycemia was obviously due to the 34 g extra carbohydrates ingested. Interestingly postprandial insulin concentrations were not different between stress- and the non-stress intervention (Figure 3). Noteworthy, these serum insulin concentrations were equal despite different blood glucose concentrations. Thus, the extra carbohydrates ingested after stress failed to elicit a correspondent rise in insulin.


The selfish brain: stress and eating behavior.

Peters A, Kubera B, Hubold C, Langemann D - Front Neurosci (2011)

Glucose and insulin concentrations during stress and non-stress intervention in 10 men offered a rich buffet. Values are means ± SEM; closed symbols, stress intervention and open symbols, non-stress intervention; glucose concentrations are significantly different from non-stress intervention, interaction time × stress intervention: F = 3.8, ***p < 0.001, by ANOVA for repeated measures; insulin concentrations are equal between stress and non-stress intervention, interaction time × stress intervention: F = 2.5, p > 0.05, by ANOVA for repeated measures.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3105244&req=5

Figure 3: Glucose and insulin concentrations during stress and non-stress intervention in 10 men offered a rich buffet. Values are means ± SEM; closed symbols, stress intervention and open symbols, non-stress intervention; glucose concentrations are significantly different from non-stress intervention, interaction time × stress intervention: F = 3.8, ***p < 0.001, by ANOVA for repeated measures; insulin concentrations are equal between stress and non-stress intervention, interaction time × stress intervention: F = 2.5, p > 0.05, by ANOVA for repeated measures.
Mentions: Do these stress extra carbohydrates alter blood glucose concentrations? Blood glucose concentrations increased in the post-stress replenishment phase after rich buffet ingestion (Hitze et al., 2010). As expected the meal induced hyperglycemia was more pronounced in the stress compared to the non-stress intervention. Higher hyperglycemia was obviously due to the 34 g extra carbohydrates ingested. Interestingly postprandial insulin concentrations were not different between stress- and the non-stress intervention (Figure 3). Noteworthy, these serum insulin concentrations were equal despite different blood glucose concentrations. Thus, the extra carbohydrates ingested after stress failed to elicit a correspondent rise in insulin.

Bottom Line: Furthermore psychosocial stress elicits a marked increase in eating behavior in the post-stress phase.Subjects ingested more carbohydrates without any preference for sweet ingredients.These experimentally observed changes of cerebral demand, supply and need are integrated into a logistic framework describing the supply chain of the selfish brain.

View Article: PubMed Central - PubMed

Affiliation: Medical Clinic 1, University of Luebeck Luebeck, Germany.

ABSTRACT
The brain occupies a special hierarchical position in human energy metabolism. If cerebral homeostasis is threatened, the brain behaves in a "selfish" manner by competing for energy resources with the body. Here we present a logistic approach, which is based on the principles of supply and demand known from economics. In this "cerebral supply chain" model, the brain constitutes the final consumer. In order to illustrate the operating mode of the cerebral supply chain, we take experimental data which allow assessing the supply, demand and need of the brain under conditions of psychosocial stress. The experimental results show that the brain under conditions of psychosocial stress actively demands energy from the body, in order to cover its increased energy needs. The data demonstrate that the stressed brain uses a mechanism referred to as "cerebral insulin suppression" to limit glucose fluxes into peripheral tissue (muscle, fat) and to enhance cerebral glucose supply. Furthermore psychosocial stress elicits a marked increase in eating behavior in the post-stress phase. Subjects ingested more carbohydrates without any preference for sweet ingredients. These experimentally observed changes of cerebral demand, supply and need are integrated into a logistic framework describing the supply chain of the selfish brain.

No MeSH data available.


Related in: MedlinePlus