Limits...
Dual organism transcriptomics of airway epithelial cells interacting with conidia of Aspergillus fumigatus.

Oosthuizen JL, Gomez P, Ruan J, Hackett TL, Moore MM, Knight DA, Tebbutt SJ - PLoS ONE (2011)

Bottom Line: Concomitantly, A. fumigatus was found to up-regulate fungal pathways involved in iron acquisition, vacuolar acidification, and formate dehydrogenase activity.The up-regulation of IL-6 by epithelia and simultaneous activation of several pathways by fungal conidia warrants further investigation as we seek to better understand this interaction in both health and disease.The cellular response of the airway epithelium to A. fumigatus is important to understand if we are to improve host-pathogen outcomes.

View Article: PubMed Central - PubMed

Affiliation: UBC James Hogg Research Centre, Institute for HEART+LUNG Health, Providence Health Care, Vancouver, British Columbia, Canada.

ABSTRACT

Background: Given the complex nature of the responses that can occur in host-pathogen interactions, dual transcriptomics offers a powerful method of elucidating these interactions during infection. The gene expression patterns of Aspergillus fumigatus conidia or host cells have been reported in a number of previous studies, but each focused on only one of the interacting organisms. In the present study, we profiled simultaneously the transcriptional response of both A. fumigatus and human airway epithelial cells (AECs).

Methodology: 16HBE14o- transformed bronchial epithelial cells were incubated with A. fumigatus conidia at 37°C for 6 hours, followed by genome-wide transcriptome analysis using human and fungal microarrays. Differentially expressed gene lists were generated from the microarrays, from which biologically relevant themes were identified. Human and fungal candidate genes were selected for validation, using RT-qPCR, in both 16HBE14o- cells and primary AECs co-cultured with conidia.

Principal findings: We report that ontologies related to the innate immune response are activated by co-incubation with A. fumigatus condia, and interleukin-6 (IL-6) was confirmed to be up-regulated in primary AECs via RT-qPCR. Concomitantly, A. fumigatus was found to up-regulate fungal pathways involved in iron acquisition, vacuolar acidification, and formate dehydrogenase activity.

Conclusion: To our knowledge, this is the first study to apply a dual organism transcriptomics approach to interactions of A. fumigatus conidia and human airway epithelial cells. The up-regulation of IL-6 by epithelia and simultaneous activation of several pathways by fungal conidia warrants further investigation as we seek to better understand this interaction in both health and disease. The cellular response of the airway epithelium to A. fumigatus is important to understand if we are to improve host-pathogen outcomes.

Show MeSH

Related in: MedlinePlus

Relative mRNA expression levels of human genes obtained by RT-qPCR.RNA was obtained from four co-incubations each of 16HBE14o- (grey bars) or primary normal bronchial epithelial cells (AECs) (white bars) with conidia of A. fumigatus. Height of each bar represents expression of gene in co-incubated condition relative to cells alone control (mean ± SE). (* p<0.05).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3105077&req=5

pone-0020527-g002: Relative mRNA expression levels of human genes obtained by RT-qPCR.RNA was obtained from four co-incubations each of 16HBE14o- (grey bars) or primary normal bronchial epithelial cells (AECs) (white bars) with conidia of A. fumigatus. Height of each bar represents expression of gene in co-incubated condition relative to cells alone control (mean ± SE). (* p<0.05).

Mentions: Three additional targets were chosen based on their strength as among the most strongly differentially expressed, in a consistent fashion, in both experiments. These genes are zinc finger 433 (ZNF433), leucine rich repeat containing 14 (LRRC14), and DOT1-like, histone H3 methyltransferase (DOT1L). Despite relatively little information regarding function, they may nonetheless represent genes involved in the cellular response to A. fumigatus. The results of RT-qPCR can be seen in Figure 2. IL-6 was the only gene tested with RT-qPCR that was differentially expressed in both cell types following co-incubation with A. fumigatus conidia. Both MMP1 and CSF2 each achieved significant differential expression in only one of the cell types tested. CCL3, CCL5, ZNF433, DOT1L and LRRC14 failed to achieve significant differential expression in either cell type following incubation with A. fumigatus condia.


Dual organism transcriptomics of airway epithelial cells interacting with conidia of Aspergillus fumigatus.

Oosthuizen JL, Gomez P, Ruan J, Hackett TL, Moore MM, Knight DA, Tebbutt SJ - PLoS ONE (2011)

Relative mRNA expression levels of human genes obtained by RT-qPCR.RNA was obtained from four co-incubations each of 16HBE14o- (grey bars) or primary normal bronchial epithelial cells (AECs) (white bars) with conidia of A. fumigatus. Height of each bar represents expression of gene in co-incubated condition relative to cells alone control (mean ± SE). (* p<0.05).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3105077&req=5

pone-0020527-g002: Relative mRNA expression levels of human genes obtained by RT-qPCR.RNA was obtained from four co-incubations each of 16HBE14o- (grey bars) or primary normal bronchial epithelial cells (AECs) (white bars) with conidia of A. fumigatus. Height of each bar represents expression of gene in co-incubated condition relative to cells alone control (mean ± SE). (* p<0.05).
Mentions: Three additional targets were chosen based on their strength as among the most strongly differentially expressed, in a consistent fashion, in both experiments. These genes are zinc finger 433 (ZNF433), leucine rich repeat containing 14 (LRRC14), and DOT1-like, histone H3 methyltransferase (DOT1L). Despite relatively little information regarding function, they may nonetheless represent genes involved in the cellular response to A. fumigatus. The results of RT-qPCR can be seen in Figure 2. IL-6 was the only gene tested with RT-qPCR that was differentially expressed in both cell types following co-incubation with A. fumigatus conidia. Both MMP1 and CSF2 each achieved significant differential expression in only one of the cell types tested. CCL3, CCL5, ZNF433, DOT1L and LRRC14 failed to achieve significant differential expression in either cell type following incubation with A. fumigatus condia.

Bottom Line: Concomitantly, A. fumigatus was found to up-regulate fungal pathways involved in iron acquisition, vacuolar acidification, and formate dehydrogenase activity.The up-regulation of IL-6 by epithelia and simultaneous activation of several pathways by fungal conidia warrants further investigation as we seek to better understand this interaction in both health and disease.The cellular response of the airway epithelium to A. fumigatus is important to understand if we are to improve host-pathogen outcomes.

View Article: PubMed Central - PubMed

Affiliation: UBC James Hogg Research Centre, Institute for HEART+LUNG Health, Providence Health Care, Vancouver, British Columbia, Canada.

ABSTRACT

Background: Given the complex nature of the responses that can occur in host-pathogen interactions, dual transcriptomics offers a powerful method of elucidating these interactions during infection. The gene expression patterns of Aspergillus fumigatus conidia or host cells have been reported in a number of previous studies, but each focused on only one of the interacting organisms. In the present study, we profiled simultaneously the transcriptional response of both A. fumigatus and human airway epithelial cells (AECs).

Methodology: 16HBE14o- transformed bronchial epithelial cells were incubated with A. fumigatus conidia at 37°C for 6 hours, followed by genome-wide transcriptome analysis using human and fungal microarrays. Differentially expressed gene lists were generated from the microarrays, from which biologically relevant themes were identified. Human and fungal candidate genes were selected for validation, using RT-qPCR, in both 16HBE14o- cells and primary AECs co-cultured with conidia.

Principal findings: We report that ontologies related to the innate immune response are activated by co-incubation with A. fumigatus condia, and interleukin-6 (IL-6) was confirmed to be up-regulated in primary AECs via RT-qPCR. Concomitantly, A. fumigatus was found to up-regulate fungal pathways involved in iron acquisition, vacuolar acidification, and formate dehydrogenase activity.

Conclusion: To our knowledge, this is the first study to apply a dual organism transcriptomics approach to interactions of A. fumigatus conidia and human airway epithelial cells. The up-regulation of IL-6 by epithelia and simultaneous activation of several pathways by fungal conidia warrants further investigation as we seek to better understand this interaction in both health and disease. The cellular response of the airway epithelium to A. fumigatus is important to understand if we are to improve host-pathogen outcomes.

Show MeSH
Related in: MedlinePlus