Limits...
Environmental and climatic determinants of molecular diversity and genetic population structure in a coenagrionid damselfly.

Wellenreuther M, Sánchez-Guillén RA, Cordero-Rivera A, Svensson EI, Hansson B - PLoS ONE (2011)

Bottom Line: We found low to moderate genetic sub-structuring between populations (mean F(ST) = 0.06, D(est) = 0.12), and an effect of longitude, but not latitude, on genetic diversity.No significant effects of geographic boundaries (e.g. water bodies) were found.Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, Lund University, Lund, Sweden. maren.wellenreuther@biol.lu.se

ABSTRACT
Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed damselfly Ischnuraelegans, which has been the target of many ecological and evolutionary studies. We addressed the following questions: (i) Is the population structure affected by longitudinal or latitudinal gradients?; (ii) Do geographic boundaries limit gene flow?; (iii) Does geographic distance affect connectivity and is there a signature of past bottlenecks?; (iv) Is there evidence of a recent range expansion and (vi) what is the effect of geography and climatic factors on population structure? We found low to moderate genetic sub-structuring between populations (mean F(ST) = 0.06, D(est) = 0.12), and an effect of longitude, but not latitude, on genetic diversity. No significant effects of geographic boundaries (e.g. water bodies) were found. F(ST)-and D(est)-values increased with geographic distance; however, there was no evidence for recent bottlenecks. Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation. The population structure of this small insect has probably been shaped by ecological factors that are correlated with longitudinal gradients, geographic distances, and local precipitation. The relatively weak global population structure and high degree of genetic variation within populations suggest that I. elegans has high dispersal ability, which is consistent with this species being an effective and early coloniser of new habitats.

Show MeSH
Spatial output from GENELAND using all 22 I.                            elegans populations (A) and (B) all 22 I.                                elegans populations and the four I.                                graellsii populations.Black circles indicate the relative positions of the sampled populations                            (see Figure 1).                            Darker and lighter shading are proportional to posterior probabilities                            of membership in clusters, with lighter (yellow) areas showing the                            highest posterior probabilities of clusters.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3105071&req=5

pone-0020440-g004: Spatial output from GENELAND using all 22 I. elegans populations (A) and (B) all 22 I. elegans populations and the four I. graellsii populations.Black circles indicate the relative positions of the sampled populations (see Figure 1). Darker and lighter shading are proportional to posterior probabilities of membership in clusters, with lighter (yellow) areas showing the highest posterior probabilities of clusters.

Mentions: GENELAND was employed to complement the analyses run in STRUCTURE and to add a more explicit geographic component to the tests. Two analyses were run (22 I. elegans populations and 22 I. elegans populations and four I. graellsii populations)and these identified fiveand six clusters, respectively, of which the first five were identicalbetween analyses (Figure 4A and B). The first cluster contained all populations from Poland and the Ukraine (five populations), the second cluster consisted of populations from Germany, the UK, Sweden, northern France and Belgium (six populations), the third cluster contained populations from eastern Spain and southern France (seven populations), the forth cluster was made-up of populations from western Spain (three populations), and the fifth cluster consisted of the single Italian population(Figure 4A and B). The sixth cluster of the second analysis (22 I. elegans populations plus four I. graellsii populations) contained the four I. graellsii populationsin western andsouthern Spain and Morocco (Figure 4A and B). Finally, the finding that GENELAND identified a greater number of clusters than STRUCTURE (five/six versus three), and that the same clusters were identified by independent GENELAND runs and produced similar values of posterior probabilities, could indicate that the algorithm employed in GENELAND may be more sensitive to find weak clusters in space.


Environmental and climatic determinants of molecular diversity and genetic population structure in a coenagrionid damselfly.

Wellenreuther M, Sánchez-Guillén RA, Cordero-Rivera A, Svensson EI, Hansson B - PLoS ONE (2011)

Spatial output from GENELAND using all 22 I.                            elegans populations (A) and (B) all 22 I.                                elegans populations and the four I.                                graellsii populations.Black circles indicate the relative positions of the sampled populations                            (see Figure 1).                            Darker and lighter shading are proportional to posterior probabilities                            of membership in clusters, with lighter (yellow) areas showing the                            highest posterior probabilities of clusters.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3105071&req=5

pone-0020440-g004: Spatial output from GENELAND using all 22 I. elegans populations (A) and (B) all 22 I. elegans populations and the four I. graellsii populations.Black circles indicate the relative positions of the sampled populations (see Figure 1). Darker and lighter shading are proportional to posterior probabilities of membership in clusters, with lighter (yellow) areas showing the highest posterior probabilities of clusters.
Mentions: GENELAND was employed to complement the analyses run in STRUCTURE and to add a more explicit geographic component to the tests. Two analyses were run (22 I. elegans populations and 22 I. elegans populations and four I. graellsii populations)and these identified fiveand six clusters, respectively, of which the first five were identicalbetween analyses (Figure 4A and B). The first cluster contained all populations from Poland and the Ukraine (five populations), the second cluster consisted of populations from Germany, the UK, Sweden, northern France and Belgium (six populations), the third cluster contained populations from eastern Spain and southern France (seven populations), the forth cluster was made-up of populations from western Spain (three populations), and the fifth cluster consisted of the single Italian population(Figure 4A and B). The sixth cluster of the second analysis (22 I. elegans populations plus four I. graellsii populations) contained the four I. graellsii populationsin western andsouthern Spain and Morocco (Figure 4A and B). Finally, the finding that GENELAND identified a greater number of clusters than STRUCTURE (five/six versus three), and that the same clusters were identified by independent GENELAND runs and produced similar values of posterior probabilities, could indicate that the algorithm employed in GENELAND may be more sensitive to find weak clusters in space.

Bottom Line: We found low to moderate genetic sub-structuring between populations (mean F(ST) = 0.06, D(est) = 0.12), and an effect of longitude, but not latitude, on genetic diversity.No significant effects of geographic boundaries (e.g. water bodies) were found.Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, Lund University, Lund, Sweden. maren.wellenreuther@biol.lu.se

ABSTRACT
Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed damselfly Ischnuraelegans, which has been the target of many ecological and evolutionary studies. We addressed the following questions: (i) Is the population structure affected by longitudinal or latitudinal gradients?; (ii) Do geographic boundaries limit gene flow?; (iii) Does geographic distance affect connectivity and is there a signature of past bottlenecks?; (iv) Is there evidence of a recent range expansion and (vi) what is the effect of geography and climatic factors on population structure? We found low to moderate genetic sub-structuring between populations (mean F(ST) = 0.06, D(est) = 0.12), and an effect of longitude, but not latitude, on genetic diversity. No significant effects of geographic boundaries (e.g. water bodies) were found. F(ST)-and D(est)-values increased with geographic distance; however, there was no evidence for recent bottlenecks. Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation. The population structure of this small insect has probably been shaped by ecological factors that are correlated with longitudinal gradients, geographic distances, and local precipitation. The relatively weak global population structure and high degree of genetic variation within populations suggest that I. elegans has high dispersal ability, which is consistent with this species being an effective and early coloniser of new habitats.

Show MeSH