Limits...
Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy.

Zheng M, Lv LL, Ni J, Ni HF, Li Q, Ma KL, Liu BC - PLoS ONE (2011)

Bottom Line: Quantification of messenger RNA (mRNA) expression in urinary sediment by real-time PCR is emerging as a noninvasive method of screening DN-associated biomarkers.Furthermore, podocalyxin mRNA was found to negatively correlate with eGFR (r = -0.349, p = 0.01).The urinary mRNA profiles of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were found to increase with the progression of DN, which suggested that quantification of podocyte-associated molecules will be useful biomarkers of DN.

View Article: PubMed Central - PubMed

Affiliation: Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.

ABSTRACT

Background: Podocyte injury and subsequent excretion in urine play a crucial role in the pathogenesis and progression of diabetic nephropathy (DN). Quantification of messenger RNA (mRNA) expression in urinary sediment by real-time PCR is emerging as a noninvasive method of screening DN-associated biomarkers. We hypothesized that the urinary mRNA profile of podocyte-associated molecules may provide important clinical insight into the different stages of diabetic nephropathy.

Methods: DN patients (N = 51) and healthy controls (N = 13) were enrolled in this study. DN patients were divided into a normoalbuminuria group (UAE<30 mg/g, n = 17), a microalbuminuria group (UAE 30∼300 mg/g, n = 15), and a macroalbuminuria group (UAE>300 mg/g, n = 19), according to their urinary albumin excretion (UAE). Relative mRNA abundance of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were quantified, and correlations between target mRNAs and clinical parameters were examined.

Results: The urinary mRNA levels of all genes studied were significantly higher in the DN group compared with controls (p<0.05), and mRNA levels increased with DN progression. Urinary mRNA levels of all target genes positively correlated with both UAE and BUN. The expression of podocalyxin, CD2-AP, α-actin4, and podocin mRNA correlated with serum creatinine (r = 0.457, p = 0.001; r = 0.329, p = 0.01; r = 0.286, p = 0.021; r = 0.357, p = 0.006, respectively). Furthermore, podocalyxin mRNA was found to negatively correlate with eGFR (r = -0.349, p = 0.01).

Conclusion: The urinary mRNA profiles of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were found to increase with the progression of DN, which suggested that quantification of podocyte-associated molecules will be useful biomarkers of DN.

Show MeSH

Related in: MedlinePlus

Comparison of podocyte-associated mRNA expressions in urinary in varying stages of DN and controls.Box plots show the the minimum value, 25th, 50th (median), 75th, and the maximum values for lg-transformed ratios of mRNA copies compared with β-actin mRNA copies for synaptopodin, CD2-AP, α-actin4, podocin and podocalyxin. mRNA expressions among overall four groups were compared using the Kruskal-Wallis test.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3105067&req=5

pone-0020431-g002: Comparison of podocyte-associated mRNA expressions in urinary in varying stages of DN and controls.Box plots show the the minimum value, 25th, 50th (median), 75th, and the maximum values for lg-transformed ratios of mRNA copies compared with β-actin mRNA copies for synaptopodin, CD2-AP, α-actin4, podocin and podocalyxin. mRNA expressions among overall four groups were compared using the Kruskal-Wallis test.

Mentions: The gene expression levels in varying stages of DN (as defined by extent of albuminuria) compared with healthy controls are summarized in figure 2. The mRNA levels varied significantly among the different DN groups and healthy controls. The expression levels of all five target genes tended to increase with increasing progression of DN.


Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy.

Zheng M, Lv LL, Ni J, Ni HF, Li Q, Ma KL, Liu BC - PLoS ONE (2011)

Comparison of podocyte-associated mRNA expressions in urinary in varying stages of DN and controls.Box plots show the the minimum value, 25th, 50th (median), 75th, and the maximum values for lg-transformed ratios of mRNA copies compared with β-actin mRNA copies for synaptopodin, CD2-AP, α-actin4, podocin and podocalyxin. mRNA expressions among overall four groups were compared using the Kruskal-Wallis test.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3105067&req=5

pone-0020431-g002: Comparison of podocyte-associated mRNA expressions in urinary in varying stages of DN and controls.Box plots show the the minimum value, 25th, 50th (median), 75th, and the maximum values for lg-transformed ratios of mRNA copies compared with β-actin mRNA copies for synaptopodin, CD2-AP, α-actin4, podocin and podocalyxin. mRNA expressions among overall four groups were compared using the Kruskal-Wallis test.
Mentions: The gene expression levels in varying stages of DN (as defined by extent of albuminuria) compared with healthy controls are summarized in figure 2. The mRNA levels varied significantly among the different DN groups and healthy controls. The expression levels of all five target genes tended to increase with increasing progression of DN.

Bottom Line: Quantification of messenger RNA (mRNA) expression in urinary sediment by real-time PCR is emerging as a noninvasive method of screening DN-associated biomarkers.Furthermore, podocalyxin mRNA was found to negatively correlate with eGFR (r = -0.349, p = 0.01).The urinary mRNA profiles of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were found to increase with the progression of DN, which suggested that quantification of podocyte-associated molecules will be useful biomarkers of DN.

View Article: PubMed Central - PubMed

Affiliation: Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.

ABSTRACT

Background: Podocyte injury and subsequent excretion in urine play a crucial role in the pathogenesis and progression of diabetic nephropathy (DN). Quantification of messenger RNA (mRNA) expression in urinary sediment by real-time PCR is emerging as a noninvasive method of screening DN-associated biomarkers. We hypothesized that the urinary mRNA profile of podocyte-associated molecules may provide important clinical insight into the different stages of diabetic nephropathy.

Methods: DN patients (N = 51) and healthy controls (N = 13) were enrolled in this study. DN patients were divided into a normoalbuminuria group (UAE<30 mg/g, n = 17), a microalbuminuria group (UAE 30∼300 mg/g, n = 15), and a macroalbuminuria group (UAE>300 mg/g, n = 19), according to their urinary albumin excretion (UAE). Relative mRNA abundance of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were quantified, and correlations between target mRNAs and clinical parameters were examined.

Results: The urinary mRNA levels of all genes studied were significantly higher in the DN group compared with controls (p<0.05), and mRNA levels increased with DN progression. Urinary mRNA levels of all target genes positively correlated with both UAE and BUN. The expression of podocalyxin, CD2-AP, α-actin4, and podocin mRNA correlated with serum creatinine (r = 0.457, p = 0.001; r = 0.329, p = 0.01; r = 0.286, p = 0.021; r = 0.357, p = 0.006, respectively). Furthermore, podocalyxin mRNA was found to negatively correlate with eGFR (r = -0.349, p = 0.01).

Conclusion: The urinary mRNA profiles of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were found to increase with the progression of DN, which suggested that quantification of podocyte-associated molecules will be useful biomarkers of DN.

Show MeSH
Related in: MedlinePlus