Limits...
Patterns of coral disease across the Hawaiian archipelago: relating disease to environment.

Aeby GS, Williams GJ, Franklin EC, Kenyon J, Cox EF, Coles S, Work TM - PLoS ONE (2011)

Bottom Line: These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence.In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes.The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS.

View Article: PubMed Central - PubMed

Affiliation: Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, Hawai'i, United States of America. greta@hawaii.edu

ABSTRACT
In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS.

Show MeSH

Related in: MedlinePlus

Photos and description of coral diseases observed during surveys across the Hawaiian archipelago.All lesions have been characterized histologically and those results will be presented elsewhere. A) Acropora white syndrome (AcroWS): diffuse areas of acute to subacute tissue loss, B) Acropora growth anomalies (AcroGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, C) Montipora multifocal tissue loss (MontMFTL): multiple (>5) variably sized areas of acute to subacute tissue loss, D) Montipora white syndrome (MontWS): one to 5 areas of acute to subacute tissue loss, E) Montipora growth anomalies (MontGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, F) Porites trematodiasis (PorTrem): multiple small (∼5 mm) swollen pink to white nodules, G) Porites tissue loss syndrome (PorTLS): one to 5 areas of acute to subacute tissue loss, H) Porites multi-focal tissue loss (PorMFTL): multiple (>5) variably sized areas of acute to subacute tissue loss, I) Porites growth anomalies (PorGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, J) Porites brown necrotizing disease (PorBND): diffuse areas of unidentified brown homogenous matrix (not algae) obliterating underlying area of tissue loss and well delineated from surrounding normal tissue, K) Porites bleaching with tissue loss (Por bl w/TL): focal areas of bleaching with diffuse areas of acute to subacute tissue loss, L) Porites discolored tissue thinning syndrome (PorDTTS): distinct areas of tissue thinning and pallor. Arrows indicate lesions.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3105043&req=5

pone-0020370-g002: Photos and description of coral diseases observed during surveys across the Hawaiian archipelago.All lesions have been characterized histologically and those results will be presented elsewhere. A) Acropora white syndrome (AcroWS): diffuse areas of acute to subacute tissue loss, B) Acropora growth anomalies (AcroGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, C) Montipora multifocal tissue loss (MontMFTL): multiple (>5) variably sized areas of acute to subacute tissue loss, D) Montipora white syndrome (MontWS): one to 5 areas of acute to subacute tissue loss, E) Montipora growth anomalies (MontGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, F) Porites trematodiasis (PorTrem): multiple small (∼5 mm) swollen pink to white nodules, G) Porites tissue loss syndrome (PorTLS): one to 5 areas of acute to subacute tissue loss, H) Porites multi-focal tissue loss (PorMFTL): multiple (>5) variably sized areas of acute to subacute tissue loss, I) Porites growth anomalies (PorGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, J) Porites brown necrotizing disease (PorBND): diffuse areas of unidentified brown homogenous matrix (not algae) obliterating underlying area of tissue loss and well delineated from surrounding normal tissue, K) Porites bleaching with tissue loss (Por bl w/TL): focal areas of bleaching with diffuse areas of acute to subacute tissue loss, L) Porites discolored tissue thinning syndrome (PorDTTS): distinct areas of tissue thinning and pallor. Arrows indicate lesions.

Mentions: Twelve types of lesions were identified from the 3 coral genera, Porites, Montipora, and Acropora, from across the archipelago (Fig. 2). Eight diseases were documented from reefs within the MHI and 10 diseases from the NWHI with overlap in types of diseases (6 of 12) between regions. Signs of coral disease were widespread occurring at 87.2% of the sites surveyed within the MHI and 80% within the NWHI. Frequency of occurrence varied between diseases with some diseases, such as Porites trematodiasis (PorTrm), found archipelago-wide whereas other diseases, such as growth anomalies, found predominantly within one region (MHI) (Table 3). Average prevalence of all diseases, except PorTrm, was low (<1%) (Table 4). The average prevalence of PorTrm across the archipelago was 5.3% (range 0–87%).


Patterns of coral disease across the Hawaiian archipelago: relating disease to environment.

Aeby GS, Williams GJ, Franklin EC, Kenyon J, Cox EF, Coles S, Work TM - PLoS ONE (2011)

Photos and description of coral diseases observed during surveys across the Hawaiian archipelago.All lesions have been characterized histologically and those results will be presented elsewhere. A) Acropora white syndrome (AcroWS): diffuse areas of acute to subacute tissue loss, B) Acropora growth anomalies (AcroGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, C) Montipora multifocal tissue loss (MontMFTL): multiple (>5) variably sized areas of acute to subacute tissue loss, D) Montipora white syndrome (MontWS): one to 5 areas of acute to subacute tissue loss, E) Montipora growth anomalies (MontGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, F) Porites trematodiasis (PorTrem): multiple small (∼5 mm) swollen pink to white nodules, G) Porites tissue loss syndrome (PorTLS): one to 5 areas of acute to subacute tissue loss, H) Porites multi-focal tissue loss (PorMFTL): multiple (>5) variably sized areas of acute to subacute tissue loss, I) Porites growth anomalies (PorGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, J) Porites brown necrotizing disease (PorBND): diffuse areas of unidentified brown homogenous matrix (not algae) obliterating underlying area of tissue loss and well delineated from surrounding normal tissue, K) Porites bleaching with tissue loss (Por bl w/TL): focal areas of bleaching with diffuse areas of acute to subacute tissue loss, L) Porites discolored tissue thinning syndrome (PorDTTS): distinct areas of tissue thinning and pallor. Arrows indicate lesions.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3105043&req=5

pone-0020370-g002: Photos and description of coral diseases observed during surveys across the Hawaiian archipelago.All lesions have been characterized histologically and those results will be presented elsewhere. A) Acropora white syndrome (AcroWS): diffuse areas of acute to subacute tissue loss, B) Acropora growth anomalies (AcroGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, C) Montipora multifocal tissue loss (MontMFTL): multiple (>5) variably sized areas of acute to subacute tissue loss, D) Montipora white syndrome (MontWS): one to 5 areas of acute to subacute tissue loss, E) Montipora growth anomalies (MontGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, F) Porites trematodiasis (PorTrem): multiple small (∼5 mm) swollen pink to white nodules, G) Porites tissue loss syndrome (PorTLS): one to 5 areas of acute to subacute tissue loss, H) Porites multi-focal tissue loss (PorMFTL): multiple (>5) variably sized areas of acute to subacute tissue loss, I) Porites growth anomalies (PorGA): protuberant growths of skeleton accompanied by aberrant calyx formation overlaid by normally pigmented to colorless tissues, J) Porites brown necrotizing disease (PorBND): diffuse areas of unidentified brown homogenous matrix (not algae) obliterating underlying area of tissue loss and well delineated from surrounding normal tissue, K) Porites bleaching with tissue loss (Por bl w/TL): focal areas of bleaching with diffuse areas of acute to subacute tissue loss, L) Porites discolored tissue thinning syndrome (PorDTTS): distinct areas of tissue thinning and pallor. Arrows indicate lesions.
Mentions: Twelve types of lesions were identified from the 3 coral genera, Porites, Montipora, and Acropora, from across the archipelago (Fig. 2). Eight diseases were documented from reefs within the MHI and 10 diseases from the NWHI with overlap in types of diseases (6 of 12) between regions. Signs of coral disease were widespread occurring at 87.2% of the sites surveyed within the MHI and 80% within the NWHI. Frequency of occurrence varied between diseases with some diseases, such as Porites trematodiasis (PorTrm), found archipelago-wide whereas other diseases, such as growth anomalies, found predominantly within one region (MHI) (Table 3). Average prevalence of all diseases, except PorTrm, was low (<1%) (Table 4). The average prevalence of PorTrm across the archipelago was 5.3% (range 0–87%).

Bottom Line: These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence.In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes.The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS.

View Article: PubMed Central - PubMed

Affiliation: Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, Hawai'i, United States of America. greta@hawaii.edu

ABSTRACT
In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS.

Show MeSH
Related in: MedlinePlus