Limits...
A comparative assessment of non-laboratory-based versus commonly used laboratory-based cardiovascular disease risk scores in the NHANES III population.

Pandya A, Weinstein MC, Gaziano TA - PLoS ONE (2011)

Bottom Line: In men, c-statistics for the non-laboratory-based, Framingham (2008, 1991), and SCORE (high, low) functions were 0.782, 0.776, 0.781, 0.785, and 0.785, with p-values for differences relative to the non-laboratory-based score of 0.44, 0.89, 0.68 and 0.65, respectively.Every score discriminated risk of CVD death well, and there was high agreement in risk characterization between non-laboratory-based and laboratory-based risk scores, which suggests that the non-laboratory-based score can be a useful proxy for Framingham or SCORE functions in resource-limited settings.Future external validation studies can assess whether the sex-specific risk discrimination results hold in other populations.

View Article: PubMed Central - PubMed

Affiliation: Center for Health Decision Science, Harvard School of Public Health, Boston, Massachusetts, United States of America.

ABSTRACT

Background: National and international primary CVD risk screening guidelines focus on using total CVD risk scores. Recently, we developed a non-laboratory-based CVD risk score (inputs: age, sex, smoking, diabetes, systolic blood pressure, treatment of hypertension, body-mass index), which can assess risk faster and at lower costs compared to laboratory-based scores (inputs include cholesterol values). We aimed to assess the exchangeability of the non-laboratory-based risk score to four commonly used laboratory-based scores (Framingham CVD [2008, 1991 versions], and Systematic COronary Risk Evaluation [SCORE] for low and high risk settings) in an external validation population.

Methods and findings: Analyses were based on individual-level, score-specific rankings of risk for adults in the Third National Health and Nutrition Examination Survey (NHANES III) aged 25-74 years, without history of CVD or cancer (n = 5,999). Risk characterization agreement was based on overlap in dichotomous risk characterization (thresholds of 10-year risk >10-20%) and Spearman rank correlation. Risk discrimination was assessed using receiver operator characteristic curve analysis (10-year CVD death outcome). Risk characterization agreement ranged from 91.9-95.7% and 94.2-95.1% with Spearman correlation ranges of 0.957-0.980 and 0.946-0.970 for men and women, respectively. In men, c-statistics for the non-laboratory-based, Framingham (2008, 1991), and SCORE (high, low) functions were 0.782, 0.776, 0.781, 0.785, and 0.785, with p-values for differences relative to the non-laboratory-based score of 0.44, 0.89, 0.68 and 0.65, respectively. In women, the corresponding c-statistics were 0.809, 0.834, 0.821, 0.792, and 0.792, with corresponding p-values of 0.04, 0.34, 0.11 and 0.09, respectively.

Conclusions: Every score discriminated risk of CVD death well, and there was high agreement in risk characterization between non-laboratory-based and laboratory-based risk scores, which suggests that the non-laboratory-based score can be a useful proxy for Framingham or SCORE functions in resource-limited settings. Future external validation studies can assess whether the sex-specific risk discrimination results hold in other populations.

Show MeSH

Related in: MedlinePlus

ROC curves (10-year CVD death outcome) for non-laboratory-based and Framingham (2008) CVD risk scores.Receiver operator characteristic (ROC) curves for the non-laboratory-based (“non-lab”) and Framingham (2008) CVD (“fram cvd”) scores, with 10-year CVD death as the outcome of interest, for individuals with complete data. For men (Panel A), the performances in risk discrimination, as assessed by the c-statistic (i.e., area under the ROC curve) and 95% CI, were 0.782 (0.739–0.825) and 0.776 (0.733–0.819) for the non-laboratory-based and Framingham (2008) CVD risk scores, respectively, with a p-value for the difference of 0.44. For women (Panel B), the c-statistics and 95% CI were 0.809 (0.751–0.866) and 0.834 (0.782–0.885) for the non-laboratory-based and Framingham (2008) CVD risk scores, respectively, with a p-value for the difference of 0.04.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3105026&req=5

pone-0020416-g002: ROC curves (10-year CVD death outcome) for non-laboratory-based and Framingham (2008) CVD risk scores.Receiver operator characteristic (ROC) curves for the non-laboratory-based (“non-lab”) and Framingham (2008) CVD (“fram cvd”) scores, with 10-year CVD death as the outcome of interest, for individuals with complete data. For men (Panel A), the performances in risk discrimination, as assessed by the c-statistic (i.e., area under the ROC curve) and 95% CI, were 0.782 (0.739–0.825) and 0.776 (0.733–0.819) for the non-laboratory-based and Framingham (2008) CVD risk scores, respectively, with a p-value for the difference of 0.44. For women (Panel B), the c-statistics and 95% CI were 0.809 (0.751–0.866) and 0.834 (0.782–0.885) for the non-laboratory-based and Framingham (2008) CVD risk scores, respectively, with a p-value for the difference of 0.04.

Mentions: From 10-year follow-up data for each individual (excluding those with imputed risk characteristics values), there were 118 and 58 CVD deaths for men and women, which represented 26.6% and 25.3% of the total deaths within the 10-year follow-up period, respectively. Figures 2a and 2b show the ROC curves for the non-laboratory-based risk score and the Framingham (2008) CVD risk equation for men and women, respectively. For men (Figure 2a), the c-statistics and 95% confidence intervals (CIs) for the non-laboratory-based and Framingham (2008) CVD scores were 0.782 (0.739–0.825) and 0.776 (0.733–0.819), respectively. The corresponding c-statistics and 95% CIs for women (Figure 2b) were 0.809 (0.751–0.866) and 0.834 (0.782–0.885), respectively. The differences between the non-laboratory-based and the Framingham (2008) CVD scores were not statistically significant for men, but were for women (p-values of 0.44 and 0.04, respectively). These results were similar after adjusting for sample weights (c-statistics of 0.782 and 0.772 for the non-laboratory-based and Framingham CVD risk scores in men, and 0.807 and 0.832 in women, respectively). Appendix S4 shows that these trends were consistent for the full population (with imputed values), for both weighted and un-weighted analyses.


A comparative assessment of non-laboratory-based versus commonly used laboratory-based cardiovascular disease risk scores in the NHANES III population.

Pandya A, Weinstein MC, Gaziano TA - PLoS ONE (2011)

ROC curves (10-year CVD death outcome) for non-laboratory-based and Framingham (2008) CVD risk scores.Receiver operator characteristic (ROC) curves for the non-laboratory-based (“non-lab”) and Framingham (2008) CVD (“fram cvd”) scores, with 10-year CVD death as the outcome of interest, for individuals with complete data. For men (Panel A), the performances in risk discrimination, as assessed by the c-statistic (i.e., area under the ROC curve) and 95% CI, were 0.782 (0.739–0.825) and 0.776 (0.733–0.819) for the non-laboratory-based and Framingham (2008) CVD risk scores, respectively, with a p-value for the difference of 0.44. For women (Panel B), the c-statistics and 95% CI were 0.809 (0.751–0.866) and 0.834 (0.782–0.885) for the non-laboratory-based and Framingham (2008) CVD risk scores, respectively, with a p-value for the difference of 0.04.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3105026&req=5

pone-0020416-g002: ROC curves (10-year CVD death outcome) for non-laboratory-based and Framingham (2008) CVD risk scores.Receiver operator characteristic (ROC) curves for the non-laboratory-based (“non-lab”) and Framingham (2008) CVD (“fram cvd”) scores, with 10-year CVD death as the outcome of interest, for individuals with complete data. For men (Panel A), the performances in risk discrimination, as assessed by the c-statistic (i.e., area under the ROC curve) and 95% CI, were 0.782 (0.739–0.825) and 0.776 (0.733–0.819) for the non-laboratory-based and Framingham (2008) CVD risk scores, respectively, with a p-value for the difference of 0.44. For women (Panel B), the c-statistics and 95% CI were 0.809 (0.751–0.866) and 0.834 (0.782–0.885) for the non-laboratory-based and Framingham (2008) CVD risk scores, respectively, with a p-value for the difference of 0.04.
Mentions: From 10-year follow-up data for each individual (excluding those with imputed risk characteristics values), there were 118 and 58 CVD deaths for men and women, which represented 26.6% and 25.3% of the total deaths within the 10-year follow-up period, respectively. Figures 2a and 2b show the ROC curves for the non-laboratory-based risk score and the Framingham (2008) CVD risk equation for men and women, respectively. For men (Figure 2a), the c-statistics and 95% confidence intervals (CIs) for the non-laboratory-based and Framingham (2008) CVD scores were 0.782 (0.739–0.825) and 0.776 (0.733–0.819), respectively. The corresponding c-statistics and 95% CIs for women (Figure 2b) were 0.809 (0.751–0.866) and 0.834 (0.782–0.885), respectively. The differences between the non-laboratory-based and the Framingham (2008) CVD scores were not statistically significant for men, but were for women (p-values of 0.44 and 0.04, respectively). These results were similar after adjusting for sample weights (c-statistics of 0.782 and 0.772 for the non-laboratory-based and Framingham CVD risk scores in men, and 0.807 and 0.832 in women, respectively). Appendix S4 shows that these trends were consistent for the full population (with imputed values), for both weighted and un-weighted analyses.

Bottom Line: In men, c-statistics for the non-laboratory-based, Framingham (2008, 1991), and SCORE (high, low) functions were 0.782, 0.776, 0.781, 0.785, and 0.785, with p-values for differences relative to the non-laboratory-based score of 0.44, 0.89, 0.68 and 0.65, respectively.Every score discriminated risk of CVD death well, and there was high agreement in risk characterization between non-laboratory-based and laboratory-based risk scores, which suggests that the non-laboratory-based score can be a useful proxy for Framingham or SCORE functions in resource-limited settings.Future external validation studies can assess whether the sex-specific risk discrimination results hold in other populations.

View Article: PubMed Central - PubMed

Affiliation: Center for Health Decision Science, Harvard School of Public Health, Boston, Massachusetts, United States of America.

ABSTRACT

Background: National and international primary CVD risk screening guidelines focus on using total CVD risk scores. Recently, we developed a non-laboratory-based CVD risk score (inputs: age, sex, smoking, diabetes, systolic blood pressure, treatment of hypertension, body-mass index), which can assess risk faster and at lower costs compared to laboratory-based scores (inputs include cholesterol values). We aimed to assess the exchangeability of the non-laboratory-based risk score to four commonly used laboratory-based scores (Framingham CVD [2008, 1991 versions], and Systematic COronary Risk Evaluation [SCORE] for low and high risk settings) in an external validation population.

Methods and findings: Analyses were based on individual-level, score-specific rankings of risk for adults in the Third National Health and Nutrition Examination Survey (NHANES III) aged 25-74 years, without history of CVD or cancer (n = 5,999). Risk characterization agreement was based on overlap in dichotomous risk characterization (thresholds of 10-year risk >10-20%) and Spearman rank correlation. Risk discrimination was assessed using receiver operator characteristic curve analysis (10-year CVD death outcome). Risk characterization agreement ranged from 91.9-95.7% and 94.2-95.1% with Spearman correlation ranges of 0.957-0.980 and 0.946-0.970 for men and women, respectively. In men, c-statistics for the non-laboratory-based, Framingham (2008, 1991), and SCORE (high, low) functions were 0.782, 0.776, 0.781, 0.785, and 0.785, with p-values for differences relative to the non-laboratory-based score of 0.44, 0.89, 0.68 and 0.65, respectively. In women, the corresponding c-statistics were 0.809, 0.834, 0.821, 0.792, and 0.792, with corresponding p-values of 0.04, 0.34, 0.11 and 0.09, respectively.

Conclusions: Every score discriminated risk of CVD death well, and there was high agreement in risk characterization between non-laboratory-based and laboratory-based risk scores, which suggests that the non-laboratory-based score can be a useful proxy for Framingham or SCORE functions in resource-limited settings. Future external validation studies can assess whether the sex-specific risk discrimination results hold in other populations.

Show MeSH
Related in: MedlinePlus