Limits...
A comparative assessment of non-laboratory-based versus commonly used laboratory-based cardiovascular disease risk scores in the NHANES III population.

Pandya A, Weinstein MC, Gaziano TA - PLoS ONE (2011)

Bottom Line: In men, c-statistics for the non-laboratory-based, Framingham (2008, 1991), and SCORE (high, low) functions were 0.782, 0.776, 0.781, 0.785, and 0.785, with p-values for differences relative to the non-laboratory-based score of 0.44, 0.89, 0.68 and 0.65, respectively.Every score discriminated risk of CVD death well, and there was high agreement in risk characterization between non-laboratory-based and laboratory-based risk scores, which suggests that the non-laboratory-based score can be a useful proxy for Framingham or SCORE functions in resource-limited settings.Future external validation studies can assess whether the sex-specific risk discrimination results hold in other populations.

View Article: PubMed Central - PubMed

Affiliation: Center for Health Decision Science, Harvard School of Public Health, Boston, Massachusetts, United States of America.

ABSTRACT

Background: National and international primary CVD risk screening guidelines focus on using total CVD risk scores. Recently, we developed a non-laboratory-based CVD risk score (inputs: age, sex, smoking, diabetes, systolic blood pressure, treatment of hypertension, body-mass index), which can assess risk faster and at lower costs compared to laboratory-based scores (inputs include cholesterol values). We aimed to assess the exchangeability of the non-laboratory-based risk score to four commonly used laboratory-based scores (Framingham CVD [2008, 1991 versions], and Systematic COronary Risk Evaluation [SCORE] for low and high risk settings) in an external validation population.

Methods and findings: Analyses were based on individual-level, score-specific rankings of risk for adults in the Third National Health and Nutrition Examination Survey (NHANES III) aged 25-74 years, without history of CVD or cancer (n = 5,999). Risk characterization agreement was based on overlap in dichotomous risk characterization (thresholds of 10-year risk >10-20%) and Spearman rank correlation. Risk discrimination was assessed using receiver operator characteristic curve analysis (10-year CVD death outcome). Risk characterization agreement ranged from 91.9-95.7% and 94.2-95.1% with Spearman correlation ranges of 0.957-0.980 and 0.946-0.970 for men and women, respectively. In men, c-statistics for the non-laboratory-based, Framingham (2008, 1991), and SCORE (high, low) functions were 0.782, 0.776, 0.781, 0.785, and 0.785, with p-values for differences relative to the non-laboratory-based score of 0.44, 0.89, 0.68 and 0.65, respectively. In women, the corresponding c-statistics were 0.809, 0.834, 0.821, 0.792, and 0.792, with corresponding p-values of 0.04, 0.34, 0.11 and 0.09, respectively.

Conclusions: Every score discriminated risk of CVD death well, and there was high agreement in risk characterization between non-laboratory-based and laboratory-based risk scores, which suggests that the non-laboratory-based score can be a useful proxy for Framingham or SCORE functions in resource-limited settings. Future external validation studies can assess whether the sex-specific risk discrimination results hold in other populations.

Show MeSH

Related in: MedlinePlus

Agreement in risk characterization between Framingham (2008) CVD and non-laboratory-based risk scores.Rank variables for the non-laboratory-based risk score are plotted against rank variables for the Framingham (2008) CVD score for adults aged 25–74 years with complete data in the NHANES III population without history of MI, heart failure, stroke or cancer. Larger ranks indicate greater CVD risk. Size of bubbles correspond to NHANES III sampling weights (i.e., larger bubbles indicate more individuals represented by sample weight). Based on a risk threshold that corresponds to 10-year CHD risk (i.e., top 42.2% of men and 18.8% of women in the sample), 91.9% of men (Panel A) and 94.6% of women (Panel B) would be similarly characterized as high or low risk by the non-laboratory-based and Framingham (2008) CVD risk scores.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3105026&req=5

pone-0020416-g001: Agreement in risk characterization between Framingham (2008) CVD and non-laboratory-based risk scores.Rank variables for the non-laboratory-based risk score are plotted against rank variables for the Framingham (2008) CVD score for adults aged 25–74 years with complete data in the NHANES III population without history of MI, heart failure, stroke or cancer. Larger ranks indicate greater CVD risk. Size of bubbles correspond to NHANES III sampling weights (i.e., larger bubbles indicate more individuals represented by sample weight). Based on a risk threshold that corresponds to 10-year CHD risk (i.e., top 42.2% of men and 18.8% of women in the sample), 91.9% of men (Panel A) and 94.6% of women (Panel B) would be similarly characterized as high or low risk by the non-laboratory-based and Framingham (2008) CVD risk scores.

Mentions: Based on a risk threshold that corresponds with a 10-year CHD risk >10%, 42.2% of men and 18.8% of women in the study sample (with complete data) would be characterized as “high” risk. Figures 1a and 1b show the ranks for CVD risk as assessed by the non-laboratory-based score plotted against the ranks for CVD based on the Framingham (2008) CVD risk equation for men and women, respectively. The figures show that 91.9% of men and 94.6% of women would be characterized as “high” or “low” risk consistently using either risk score. Equivalently, 8.1% of men and 5.4% of women would be re-characterized as “high risk” by one score to “low risk” by the other or vice versa. Table 2 shows the percent agreement between the non-laboratory-based and all of the laboratory-based scores using the same threshold. Agreement was similar across genders, completeness of data, and adjustment of sample weights. Percent agreement ranged from 91.9–95.7% and 94.2–95.1% across the laboratory-based scores for men and women, respectively. When a threshold of 10-year CHD risk >20% was used (i.e., the top 16.8% and 4.2% of men and women in the study sample would be characterized as “high” risk, respectively), the corresponding agreement ranges were 94.9–96.5% and 96.6–97.9% for men and women, respectively. Appendix S3 shows that these trends were consistent when the full population (with imputed values) was analyzed.


A comparative assessment of non-laboratory-based versus commonly used laboratory-based cardiovascular disease risk scores in the NHANES III population.

Pandya A, Weinstein MC, Gaziano TA - PLoS ONE (2011)

Agreement in risk characterization between Framingham (2008) CVD and non-laboratory-based risk scores.Rank variables for the non-laboratory-based risk score are plotted against rank variables for the Framingham (2008) CVD score for adults aged 25–74 years with complete data in the NHANES III population without history of MI, heart failure, stroke or cancer. Larger ranks indicate greater CVD risk. Size of bubbles correspond to NHANES III sampling weights (i.e., larger bubbles indicate more individuals represented by sample weight). Based on a risk threshold that corresponds to 10-year CHD risk (i.e., top 42.2% of men and 18.8% of women in the sample), 91.9% of men (Panel A) and 94.6% of women (Panel B) would be similarly characterized as high or low risk by the non-laboratory-based and Framingham (2008) CVD risk scores.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3105026&req=5

pone-0020416-g001: Agreement in risk characterization between Framingham (2008) CVD and non-laboratory-based risk scores.Rank variables for the non-laboratory-based risk score are plotted against rank variables for the Framingham (2008) CVD score for adults aged 25–74 years with complete data in the NHANES III population without history of MI, heart failure, stroke or cancer. Larger ranks indicate greater CVD risk. Size of bubbles correspond to NHANES III sampling weights (i.e., larger bubbles indicate more individuals represented by sample weight). Based on a risk threshold that corresponds to 10-year CHD risk (i.e., top 42.2% of men and 18.8% of women in the sample), 91.9% of men (Panel A) and 94.6% of women (Panel B) would be similarly characterized as high or low risk by the non-laboratory-based and Framingham (2008) CVD risk scores.
Mentions: Based on a risk threshold that corresponds with a 10-year CHD risk >10%, 42.2% of men and 18.8% of women in the study sample (with complete data) would be characterized as “high” risk. Figures 1a and 1b show the ranks for CVD risk as assessed by the non-laboratory-based score plotted against the ranks for CVD based on the Framingham (2008) CVD risk equation for men and women, respectively. The figures show that 91.9% of men and 94.6% of women would be characterized as “high” or “low” risk consistently using either risk score. Equivalently, 8.1% of men and 5.4% of women would be re-characterized as “high risk” by one score to “low risk” by the other or vice versa. Table 2 shows the percent agreement between the non-laboratory-based and all of the laboratory-based scores using the same threshold. Agreement was similar across genders, completeness of data, and adjustment of sample weights. Percent agreement ranged from 91.9–95.7% and 94.2–95.1% across the laboratory-based scores for men and women, respectively. When a threshold of 10-year CHD risk >20% was used (i.e., the top 16.8% and 4.2% of men and women in the study sample would be characterized as “high” risk, respectively), the corresponding agreement ranges were 94.9–96.5% and 96.6–97.9% for men and women, respectively. Appendix S3 shows that these trends were consistent when the full population (with imputed values) was analyzed.

Bottom Line: In men, c-statistics for the non-laboratory-based, Framingham (2008, 1991), and SCORE (high, low) functions were 0.782, 0.776, 0.781, 0.785, and 0.785, with p-values for differences relative to the non-laboratory-based score of 0.44, 0.89, 0.68 and 0.65, respectively.Every score discriminated risk of CVD death well, and there was high agreement in risk characterization between non-laboratory-based and laboratory-based risk scores, which suggests that the non-laboratory-based score can be a useful proxy for Framingham or SCORE functions in resource-limited settings.Future external validation studies can assess whether the sex-specific risk discrimination results hold in other populations.

View Article: PubMed Central - PubMed

Affiliation: Center for Health Decision Science, Harvard School of Public Health, Boston, Massachusetts, United States of America.

ABSTRACT

Background: National and international primary CVD risk screening guidelines focus on using total CVD risk scores. Recently, we developed a non-laboratory-based CVD risk score (inputs: age, sex, smoking, diabetes, systolic blood pressure, treatment of hypertension, body-mass index), which can assess risk faster and at lower costs compared to laboratory-based scores (inputs include cholesterol values). We aimed to assess the exchangeability of the non-laboratory-based risk score to four commonly used laboratory-based scores (Framingham CVD [2008, 1991 versions], and Systematic COronary Risk Evaluation [SCORE] for low and high risk settings) in an external validation population.

Methods and findings: Analyses were based on individual-level, score-specific rankings of risk for adults in the Third National Health and Nutrition Examination Survey (NHANES III) aged 25-74 years, without history of CVD or cancer (n = 5,999). Risk characterization agreement was based on overlap in dichotomous risk characterization (thresholds of 10-year risk >10-20%) and Spearman rank correlation. Risk discrimination was assessed using receiver operator characteristic curve analysis (10-year CVD death outcome). Risk characterization agreement ranged from 91.9-95.7% and 94.2-95.1% with Spearman correlation ranges of 0.957-0.980 and 0.946-0.970 for men and women, respectively. In men, c-statistics for the non-laboratory-based, Framingham (2008, 1991), and SCORE (high, low) functions were 0.782, 0.776, 0.781, 0.785, and 0.785, with p-values for differences relative to the non-laboratory-based score of 0.44, 0.89, 0.68 and 0.65, respectively. In women, the corresponding c-statistics were 0.809, 0.834, 0.821, 0.792, and 0.792, with corresponding p-values of 0.04, 0.34, 0.11 and 0.09, respectively.

Conclusions: Every score discriminated risk of CVD death well, and there was high agreement in risk characterization between non-laboratory-based and laboratory-based risk scores, which suggests that the non-laboratory-based score can be a useful proxy for Framingham or SCORE functions in resource-limited settings. Future external validation studies can assess whether the sex-specific risk discrimination results hold in other populations.

Show MeSH
Related in: MedlinePlus